机器学习课程 专知搜集
- 机器学习视频课程汇集: ML入门、数据挖掘、数据科学、 概率图模型、深度学习、强化学习、高级机器学习、基于ML的自然语言处理与计算机视觉、时序分析
- cs229 机器学习 吴恩达
- 台大 李宏毅 机器学习
- 爱丁堡大学 机器学习与模式识别
- Courses on machine learning
- CSC2535 -- Spring 2013 Advanced Machine Learning
- Stanford CME 323: Distributed Algorithms and Optimization
- University at Buffalo CSE574: Machine Learning and Probabilistic Graphical Models Course
- Stanford CS229: Machine Learning Autumn 2015
- Stanford / Winter 2014-2015 CS229T/STATS231: Statistical Learning Theory
- CMU Fall 2015 10-715: Advanced Introduction to Machine Learning
- 2015 Machine Learning Summer School: Convex Optimization Short Course
- STA 4273H [Winter 2015]: Large Scale Machine Learning
- University of Oxford: Machine Learning: 2014-2015
- Computer Science 294: Practical Machine Learning [Fall 2009]
- Statistics, Probability and Machine Learning Short Course
- Statistical Learning
- Machine learning courses online
- Build Intelligent Applications: Master machine learning fundamentals in five hands-on courses
- Machine Learning
- Princeton Computer Science 598D: Overcoming Intractability in Machine Learning
- Princeton Computer Science 511: Theoretical Machine Learning
- MACHINE LEARNING FOR MUSICIANS AND ARTISTS
- CMSC 726: Machine Learning
- MIT: 9.520: Statistical Learning Theory and Applications, Fall 2015
- CMU: Machine Learning: 10-701/15-781, Spring 2011
- NLA 2015 course material
- CS 189/289A: Introduction to Machine Learning[with videos]
- An Introduction to Statistical Machine Learning Spring 2014 [for ACM Class]
- CS 159: Advanced Topics in Machine Learning [Spring 2016]
- Advanced Statistical Computing [Vanderbilt University]
- Stanford CS229: Machine Learning Spring 2016
- Machine Learning: 2015-2016
- CS273a: Introduction to Machine Learning
- Machine Learning CS-433
- Machine Learning Introduction: A machine learning course using Python, Jupyter Notebooks, and OpenML
- Advanced Introduction to Machine Learning
- STA 4273H [Winter 2015]: Large Scale Machine Learning
- Statistical Learning Theory and Applications [MIT]
- Regularization Methods for Machine Learning
- Convex Optimization: Spring 2015
- CMU: Probabilistic Graphical Models [10-708, Spring 2014]
- Advanced Optimization and Randomized Methods
- Machine Learning for Robotics and Computer Vision
- Statistical Machine Learning
- Probabilistic Graphical Models [10-708, Spring 2016]
数学基础
Calculus
- Khan Academy Calculus [https://www.khanacademy.org/math/calculus-home]
Linear Algebra
- Khan Academy Linear Algebra
- Linear Algebra MIT 目前最好的线性代数课程
Statistics and probability
- edx Introduction to Statistics [https://www.edx.org/course/introduction-statistics-descriptive-uc-berkeleyx-stat2-1x]
- edx Probability [https://www.edx.org/course/introduction-statistics-probability-uc-berkeleyx-stat2-2x]
- An exploration of Random Processes for Engineers [http://www.ifp.illinois.edu/~hajek/Papers/randomprocDec11.pdf]
- Information Theory [http://colah.github.io/posts/2015-09-Visual-Information/]
成为VIP会员查看完整内容