小样本学习(Few-Shot Learning,以下简称 FSL )用于解决当可用的数据量比较少时,如何提升神经网络的性能。在 FSL 中,经常用到的一类方法被称为 Meta-learning。和普通的神经网络的训练方法一样,Meta-learning 也包含训练过程和测试过程,但是它的训练过程被称作 Meta-training 和 Meta-testing。

VIP内容

摘要: 图像分类的应用场景非常广泛, 很多场景下难以收集到足够多的数据来训练模型, 利用小样本学习进行图像分类可解决训练数据量小的问题. 本文对近年来的小样本图像分类算法进行了详细综述, 根据不同的建模方式, 将现有算法分为卷积神经网络模型和图神经网络模型两大类, 其中基于卷积神经网络模型的算法包括四种学习范式: 迁移学习、元学习、对偶学习和贝叶斯学习; 基于图神经网络模型的算法原本适用于非欧几里得结构数据, 但有部分学者将其应用于解决小样本下欧几里得数据的图像分类任务, 有关的研究成果目前相对较少. 此外, 本文汇总了现有文献中出现的数据集并通过实验结果对现有算法的性能进行了比较. 最后, 讨论了小样本图像分类技术的难点及未来研究趋势.

成为VIP会员查看完整内容
0
35

最新内容

We propose a novel transformer-based styled handwritten text image generation approach, HWT, that strives to learn both style-content entanglement as well as global and local writing style patterns. The proposed HWT captures the long and short range relationships within the style examples through a self-attention mechanism, thereby encoding both global and local style patterns. Further, the proposed transformer-based HWT comprises an encoder-decoder attention that enables style-content entanglement by gathering the style representation of each query character. To the best of our knowledge, we are the first to introduce a transformer-based generative network for styled handwritten text generation. Our proposed HWT generates realistic styled handwritten text images and significantly outperforms the state-of-the-art demonstrated through extensive qualitative, quantitative and human-based evaluations. The proposed HWT can handle arbitrary length of text and any desired writing style in a few-shot setting. Further, our HWT generalizes well to the challenging scenario where both words and writing style are unseen during training, generating realistic styled handwritten text images.

0
0
下载
预览

最新论文

We propose a novel transformer-based styled handwritten text image generation approach, HWT, that strives to learn both style-content entanglement as well as global and local writing style patterns. The proposed HWT captures the long and short range relationships within the style examples through a self-attention mechanism, thereby encoding both global and local style patterns. Further, the proposed transformer-based HWT comprises an encoder-decoder attention that enables style-content entanglement by gathering the style representation of each query character. To the best of our knowledge, we are the first to introduce a transformer-based generative network for styled handwritten text generation. Our proposed HWT generates realistic styled handwritten text images and significantly outperforms the state-of-the-art demonstrated through extensive qualitative, quantitative and human-based evaluations. The proposed HWT can handle arbitrary length of text and any desired writing style in a few-shot setting. Further, our HWT generalizes well to the challenging scenario where both words and writing style are unseen during training, generating realistic styled handwritten text images.

0
0
下载
预览
Top