判别模型,也称为条件模型或反向模型,是一类用于分类或回归的监督机器学习。这些方法通过从观测数据中推断知识来区分决策边界。这与生成模型或正向模型的想法不同,区别模型对底层数据分布的假设更少,而更依赖数据质量。

最新论文

With the proliferation of IoT devices, researchers have developed a variety of IoT device identification methods with the assistance of machine learning. Nevertheless, the security of these identification methods mostly depends on collected training data. In this research, we propose a novel attack strategy named IoTGAN to manipulate an IoT device's traffic such that it can evade machine learning based IoT device identification. In the development of IoTGAN, we have two major technical challenges: (i) How to obtain the discriminative model in a black-box setting, and (ii) How to add perturbations to IoT traffic through the manipulative model, so as to evade the identification while not influencing the functionality of IoT devices. To address these challenges, a neural network based substitute model is used to fit the target model in black-box settings, it works as a discriminative model in IoTGAN. A manipulative model is trained to add adversarial perturbations into the IoT device's traffic to evade the substitute model. Experimental results show that IoTGAN can successfully achieve the attack goals. We also develop efficient countermeasures to protect machine learning based IoT device identification from been undermined by IoTGAN.

0
0
下载
预览
参考链接
Top
微信扫码咨询专知VIP会员