模仿学习是学习尝试模仿专家行为从而获取最佳性能的一系列任务。目前主流方法包括监督式模仿学习、随机混合迭代学习和数据聚合模拟学习等方法。模仿学习(Imitation Learning)背后的原理是是通过隐含地给学习器关于这个世界的先验信息,比如执行、学习人类行为。在模仿学习任务中,智能体(agent)为了学习到策略从而尽可能像人类专家那样执行一种行为,它会寻找一种最佳的方式来使用由该专家示范的训练集(输入-输出对)。当智能体学习人类行为时,虽然我们也需要使用模仿学习,但实时的行为模拟成本会非常高。与之相反,吴恩达提出的学徒学习(Apprenticeship learning)执行的是存粹的贪婪/利用(exploitative)策略,并使用强化学习方法遍历所有的(状态和行为)轨迹(trajectories)来学习近优化策略。它需要极难的计略(maneuvers),而且几乎不可能从未观察到的状态还原。模仿学习能够处理这些未探索到的状态,所以可为自动驾驶这样的许多任务提供更可靠的通用框架。

精品内容

专知会员服务
11+阅读 · 2021年9月23日
专知会员服务
14+阅读 · 2021年8月30日
专知会员服务
18+阅读 · 2021年7月10日
专知会员服务
34+阅读 · 2021年7月2日
专知会员服务
21+阅读 · 2021年6月15日
机器人运动轨迹的模仿学习综述
专知会员服务
27+阅读 · 2021年6月8日
专知会员服务
17+阅读 · 2021年5月27日
【ICML2021】来自观察的跨域模仿
专知会员服务
15+阅读 · 2021年5月25日
参考链接
父主题
微信扫码咨询专知VIP会员