自动机器学习(AutoML)是将机器学习应用于实际问题的过程的自动化过程。AutoML涵盖了从原始数据集到可部署的机器学习模型的完整管道。提出将AutoML作为基于人工智能的解决方案来应对不断增长的应用机器学习的挑战。 AutoML的高度自动化允许非专家使用机器学习模型和技术,而无需首先成为该领域的专家。 从机器学习角度讲,AutoML 可以看作是一个在给定数据和任务上学习和泛化能力非常强大的系统。但是它强调必须非常容易使用;从自动化角度讲,AutoML 则可以看作是设计一系列高级的控制系统去操作机器学习模型,使得模型可以自动化地学习到合适的参数和配置而无需人工干预。

VIP内容

最新内容

We ascertain and compare the performances of AutoML tools on large, highly imbalanced healthcare datasets. We generated a large dataset using historical administrative claims including demographic information and flags for disease codes in four different time windows prior to 2019. We then trained three AutoML tools on this dataset to predict six different disease outcomes in 2019 and evaluated model performances on several metrics. The AutoML tools showed improvement from the baseline random forest model but did not differ significantly from each other. All models recorded low area under the precision-recall curve and failed to predict true positives while keeping the true negative rate high. Model performance was not directly related to prevalence. We provide a specific use-case to illustrate how to select a threshold that gives the best balance between true and false positive rates, as this is an important consideration in medical applications. Healthcare datasets present several challenges for AutoML tools, including large sample size, high imbalance, and limitations in the available features types. Improvements in scalability, combinations of imbalance-learning resampling and ensemble approaches, and curated feature selection are possible next steps to achieve better performance. Among the three explored, no AutoML tool consistently outperforms the rest in terms of predictive performance. The performances of the models in this study suggest that there may be room for improvement in handling medical claims data. Finally, selection of the optimal prediction threshold should be guided by the specific practical application.

0
0
下载
预览

最新论文

We ascertain and compare the performances of AutoML tools on large, highly imbalanced healthcare datasets. We generated a large dataset using historical administrative claims including demographic information and flags for disease codes in four different time windows prior to 2019. We then trained three AutoML tools on this dataset to predict six different disease outcomes in 2019 and evaluated model performances on several metrics. The AutoML tools showed improvement from the baseline random forest model but did not differ significantly from each other. All models recorded low area under the precision-recall curve and failed to predict true positives while keeping the true negative rate high. Model performance was not directly related to prevalence. We provide a specific use-case to illustrate how to select a threshold that gives the best balance between true and false positive rates, as this is an important consideration in medical applications. Healthcare datasets present several challenges for AutoML tools, including large sample size, high imbalance, and limitations in the available features types. Improvements in scalability, combinations of imbalance-learning resampling and ensemble approaches, and curated feature selection are possible next steps to achieve better performance. Among the three explored, no AutoML tool consistently outperforms the rest in terms of predictive performance. The performances of the models in this study suggest that there may be room for improvement in handling medical claims data. Finally, selection of the optimal prediction threshold should be guided by the specific practical application.

0
0
下载
预览
Top