在机器学习中,生成模型可以用来直接对数据建模(例如根据某个变量的概率密度函数进行数据采样),也可以用来建立变量间的条件概率分布。条件概率分布可以由生成模型根据贝叶斯定理形成。

VIP内容

我们提出了Omega,一种支持反事实推理的概率编程语言。反事实推理是指观察当前的某些事实,并推断如果过去采取某种干预措施会发生什么情况,例如,假设药物在x剂量时无效,那么在2剂量时有效的概率是多少?“我们通过在概率编程中引入一个新的操作符来实现这一点,类似于Pearl的做法,定义它的正式语义,提供一个实现,并通过各种仿真模型中的示例演示它的效用。

http://proceedings.mlr.press/v139/tavares21a/tavares21a.pdf

成为VIP会员查看完整内容
0
7

最新内容

Generative models trained using Differential Privacy (DP) are increasingly used to produce and share synthetic data in a privacy-friendly manner. In this paper, we set out to analyze the impact of DP on these models vis-a-vis underrepresented classes and subgroups of data. We do so from two angles: 1) the size of classes and subgroups in the synthetic data, and 2) classification accuracy on them. We also evaluate the effect of various levels of imbalance and privacy budgets. Our experiments, conducted using three state-of-the-art DP models (PrivBayes, DP-WGAN, and PATE-GAN), show that DP results in opposite size distributions in the generated synthetic data. More precisely, it affects the gap between the majority and minority classes and subgroups, either reducing it (a "Robin Hood" effect) or increasing it ("Matthew" effect). However, both of these size shifts lead to similar disparate impacts on a classifier's accuracy, affecting disproportionately more the underrepresented subparts of the data. As a result, we call for caution when analyzing or training a model on synthetic data, or risk treating different subpopulations unevenly, which might also lead to unreliable conclusions.

0
0
下载
预览

最新论文

Generative models trained using Differential Privacy (DP) are increasingly used to produce and share synthetic data in a privacy-friendly manner. In this paper, we set out to analyze the impact of DP on these models vis-a-vis underrepresented classes and subgroups of data. We do so from two angles: 1) the size of classes and subgroups in the synthetic data, and 2) classification accuracy on them. We also evaluate the effect of various levels of imbalance and privacy budgets. Our experiments, conducted using three state-of-the-art DP models (PrivBayes, DP-WGAN, and PATE-GAN), show that DP results in opposite size distributions in the generated synthetic data. More precisely, it affects the gap between the majority and minority classes and subgroups, either reducing it (a "Robin Hood" effect) or increasing it ("Matthew" effect). However, both of these size shifts lead to similar disparate impacts on a classifier's accuracy, affecting disproportionately more the underrepresented subparts of the data. As a result, we call for caution when analyzing or training a model on synthetic data, or risk treating different subpopulations unevenly, which might also lead to unreliable conclusions.

0
0
下载
预览
Top