学习方法的泛化能力(Generalization Error)是由该方法学习到的模型对未知数据的预测能力,是学习方法本质上重要的性质。现实中采用最多的办法是通过测试泛化误差来评价学习方法的泛化能力。泛化误差界刻画了学习算法的经验风险与期望风险之间偏差和收敛速度。一个机器学习的泛化误差(Generalization Error),是一个描述学生机器在从样品数据中学习之后,离教师机器之间的差距的函数。

最新内容

Estimates of the generalization error are proved for a residual neural network with $L$ random Fourier features layers $\bar z_{\ell+1}=\bar z_\ell + \mathrm{Re}\sum_{k=1}^K\bar b_{\ell k}e^{\mathrm{i}\omega_{\ell k}\bar z_\ell}+ \mathrm{Re}\sum_{k=1}^K\bar c_{\ell k}e^{\mathrm{i}\omega'_{\ell k}\cdot x}$. An optimal distribution for the frequencies $(\omega_{\ell k},\omega'_{\ell k})$ of the random Fourier features $e^{\mathrm{i}\omega_{\ell k}\bar z_\ell}$ and $e^{\mathrm{i}\omega'_{\ell k}\cdot x}$ is derived. This derivation is based on the corresponding generalization error for the approximation of the function values $f(x)$. The generalization error turns out to be smaller than the estimate ${\|\hat f\|^2_{L^1(\mathbb{R}^d)}}/{(KL)}$ of the generalization error for random Fourier features with one hidden layer and the same total number of nodes $KL$, in the case the $L^\infty$-norm of $f$ is much less than the $L^1$-norm of its Fourier transform $\hat f$. This understanding of an optimal distribution for random features is used to construct a new training method for a deep residual network. Promising performance of the proposed new algorithm is demonstrated in computational experiments.

0
0
下载
预览

最新论文

Estimates of the generalization error are proved for a residual neural network with $L$ random Fourier features layers $\bar z_{\ell+1}=\bar z_\ell + \mathrm{Re}\sum_{k=1}^K\bar b_{\ell k}e^{\mathrm{i}\omega_{\ell k}\bar z_\ell}+ \mathrm{Re}\sum_{k=1}^K\bar c_{\ell k}e^{\mathrm{i}\omega'_{\ell k}\cdot x}$. An optimal distribution for the frequencies $(\omega_{\ell k},\omega'_{\ell k})$ of the random Fourier features $e^{\mathrm{i}\omega_{\ell k}\bar z_\ell}$ and $e^{\mathrm{i}\omega'_{\ell k}\cdot x}$ is derived. This derivation is based on the corresponding generalization error for the approximation of the function values $f(x)$. The generalization error turns out to be smaller than the estimate ${\|\hat f\|^2_{L^1(\mathbb{R}^d)}}/{(KL)}$ of the generalization error for random Fourier features with one hidden layer and the same total number of nodes $KL$, in the case the $L^\infty$-norm of $f$ is much less than the $L^1$-norm of its Fourier transform $\hat f$. This understanding of an optimal distribution for random features is used to construct a new training method for a deep residual network. Promising performance of the proposed new algorithm is demonstrated in computational experiments.

0
0
下载
预览
父主题
Top