项目名称: 高维代数簇的相关问题
项目编号: No.11471116
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 杜荣
作者单位: 华东师范大学
项目金额: 60万元
中文摘要: 代数簇是代数几何研究的中心问题之一。本项目我们将主要考虑光滑射影簇的多重典范映射、高维奇点、纤维化、高维球商的构造和陈类不等式。具体地可以分为以下五类问题:1.高维阿贝尔覆盖和多重典范映射的研究;2.高维奇点的研究和复Plateau问题;3.纤维化的研究和分类有全纯共形结构的射影流形;4.高维射影空间上超曲面的排列和高维球商的构造;5.陈类不等式的研究和Chan-Leung关于推广的Miyaoka-Yau不等式的猜想。
中文关键词: 多重典范映射;代数簇;纤维化;阿贝尔覆盖;球商
英文摘要: Algebraic varieties are one of the central objects of study in algebraic geometry. We are going to mainly study the pluricanonical maps on smooth projective varieties, higher dimensional singularities, fibration,construction of higher dimensional ball quotient n-folds and Chern inequlities. The following five problems will considered in details: 1, higher dimensional Abelian cover and pluricanonical maps; 2, higher dimensional singularities and complex Plateau problem; 3, fibrations and classification of projective manifolds with holomorphic conformal structure; 4, hypersurfaces arrangements in projective spaces and construction of higher dimensionmal ball quotient n-folds; 5. Chern inequalities and Chan-Leung's conjecture on generalizing Miyaoka-Yau inequalities.
英文关键词: pluricanonical map;algebraic variety;fibration;Abelian cover;ball quotient