The multiplicity Schwartz-Zippel lemma asserts that over a field, a low-degree polynomial cannot vanish with high multiplicity very often on a sufficiently large product set. Since its discovery in a work of Dvir, Kopparty, Saraf and Sudan [SIAM J. Comput., 2013], the lemma has found numerous applications in both math and computer science; in particular, in the definition and properties of multiplicity codes by Kopparty, Saraf and Yekhanin [J. ACM, 2014]. In this work, we show how to algorithmize the multiplicity Schwartz-Zippel lemma for arbitrary product sets over any field. In other words, we give an efficient algorithm for unique decoding of multivariate multiplicity codes from half their minimum distance on arbitrary product sets over all fields. Previously, such an algorithm was known either when the underlying product set had a nice algebraic structure: for instance, was a subfield (by Kopparty [ToC, 2015]) or when the underlying field had large (or zero) characteristic, the multiplicity parameter was sufficiently large and the multiplicity code had distance bounded away from $1$ (Bhandari, Harsha, Kumar and Sudan [STOC 2021]). In particular, even unique decoding of bivariate multiplicity codes with multiplicity two from half their minimum distance was not known over arbitrary product sets over any field. Our algorithm builds upon a result of Kim and Kopparty [ToC, 2017] who gave an algorithmic version of the Schwartz-Zippel lemma (without multiplicities) or equivalently, an efficient algorithm for unique decoding of Reed-Muller codes over arbitrary product sets. We introduce a refined notion of distance based on the multiplicity Schwartz-Zippel lemma and design a unique decoding algorithm for this distance measure. On the way, we give an alternate analysis of Forney's classical generalized minimum distance decoder that might be of independent interest.


翻译:多重Schwartz- Zippel lemma 声称, 在一个字段中, 一个低度的多式运算无法随着高度的多重性而消失, 在足够大的产品组中经常出现。 自从它在Dvir、 Kopstate、 Saraf 和苏丹[SIAM J. comput., 2013] 的作品中发现以来, 狐emma在数学和计算机科学中都发现了许多应用; 特别是在由 Kopparty、 Saraf 和 Yekhanin [J. ACM, 2014] 的多重性代码的定义和属性方面。 在这项工作中, 我们展示了如何将多重性Schwartz- Zippel Lemma 的多级运算算算法进行算法化。 换句话说, 在任意性产品组的半数距离中,我们给出了一个独特的多变异性多重性代码的算法, 在Schal- reco Z 上, 任何一种特殊的直立的直径( Ormal dicional dical diversal diversal diversal del dide) ex ex ex ex ex, del lade a ex, lax a ex, lacidududududududuce, ex, maciduce, ex ex, ex, ex, lex ex ex a lex mso, ex, lex lex lex le, lex a latime, latime, le, le, lece, ex, lex ex, lex lex, lex lex lex la, laut, le, la, lex la, laut, la, la, laut, la, la, lex lax lax laut, lax lax lax lax lax le, ro, le, le, le, le, le, le, le, lacal lax lax la, lax lax le, la,

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员