This manuscript gives a theoretical framework for a new Hilbert space of functions, the so called occupation kernel Hilbert space (OKHS), that operate on collections of signals rather than real or complex numbers. To support this new definition, an explicit class of OKHSs is given through the consideration of a reproducing kernel Hilbert space (RKHS). This space enables the definition of nonlocal operators, such as fractional order Liouville operators, as well as spectral decomposition methods for corresponding fractional order dynamical systems. In this manuscript, a fractional order DMD routine is presented, and the details of the finite rank representations are given. Significantly, despite the added theoretical content through the OKHS formulation, the resultant computations only differ slightly from that of occupation kernel DMD methods for integer order systems posed over RKHSs.
翻译:手稿为新的Hilbert功能空间提供了一个理论框架, 即所谓的职业核心Hilbert空间( OKHS), 以收集信号而不是真实或复杂的数字运作。 为了支持这一新的定义, 考虑复制一个核心Hilbert 空间( RKHS), 给出了明确的OKHS类别。 这个空间可以给非本地操作者下定义, 如分序 Liouville 操作员, 以及相应的分序动态系统光谱分解方法 。 手稿中提供了分序 DMD 常规, 并给出了定级表的细节 。 值得注意的是, 尽管通过 CPHS 公式添加了理论内容, 由此产生的计算方法仅与 占领核心 DMD 方法在RKHS 上设定的整序系统略有不同 。