Deep learning methods for graphs achieve remarkable performance on many node-level and graph-level prediction tasks. However, despite the proliferation of the methods and their success, prevailing Graph Neural Networks (GNNs) neglect subgraphs, rendering subgraph prediction tasks challenging to tackle in many impactful applications. Further, subgraph prediction tasks present several unique challenges, because subgraphs can have non-trivial internal topology, but also carry a notion of position and external connectivity information relative to the underlying graph in which they exist. Here, we introduce SUB-GNN, a subgraph neural network to learn disentangled subgraph representations. In particular, we propose a novel subgraph routing mechanism that propagates neural messages between the subgraph's components and randomly sampled anchor patches from the underlying graph, yielding highly accurate subgraph representations. SUB-GNN specifies three channels, each designed to capture a distinct aspect of subgraph structure, and we provide empirical evidence that the channels encode their intended properties. We design a series of new synthetic and real-world subgraph datasets. Empirical results for subgraph classification on eight datasets show that SUB-GNN achieves considerable performance gains, outperforming strong baseline methods, including node-level and graph-level GNNs, by 12.4% over the strongest baseline. SUB-GNN performs exceptionally well on challenging biomedical datasets when subgraphs have complex topology and even comprise multiple disconnected components.
翻译:图表的深深学习方法在许多节点和图表级的预测任务中取得了显著的成绩。然而,尽管方法及其成功,盛行的图形神经网络(GNN)忽视了子集,使得下游预测任务在许多影响性应用中难以应对。此外,下游预测任务提出了若干独特的挑战,因为下游预测任务可能具有非三边的内部地形学,但也包含与其所存在的底图相对应的位置和外部连通信息的概念。在这里,我们引入了Sub-GNNN,一个子图神经网络,以学习分解的子表层表示。特别是,我们提议了一个新的子图谱路由路径传输机制,在子图各组成部分之间传播神经信息,并在基本图中随机抽取锚定的锚定补补,产生高度精确的子图表示,因为子图结构结构的不同方面,我们提供经验证据,说明这些渠道编码了其预定的特性。我们设计了一系列新的合成和真实世界的子图解数据集。特别是,我们提出了一个新的子图谱系分集分集分集分集的新的分集路路机制,在以下各组之间传播新的分集结果,用于Borphiralalal-Calalalalalalalbormal lausal rograal rographal del结果,Bal labal rographal labal labal robal labal labal labal roal labal roal roal labal labal labal labal laveal del drocal lad drod drocal del drocal drod dres labal labal lad sal labal labal labal labal labal labal labal real labal labal labal labal roal robal labal roal dal dal dal labal labal dal dal dal labal labal labal labal labal labal labal roal ro