Drug-Drug Interactions (DDIs) may hamper the functionalities of drugs, and in the worst scenario, they may lead to adverse drug reactions (ADRs). Predicting all DDIs is a challenging and critical problem. Most existing computational models integrate drug-centric information from different sources and leverage them as features in machine learning classifiers to predict DDIs. However, these models have a high chance of failure, especially for the new drugs when all the information is not available. This paper proposes a novel Hypergraph Neural Network (HyGNN) model based on only the SMILES string of drugs, available for any drug, for the DDI prediction problem. To capture the drug similarities, we create a hypergraph from drugs' chemical substructures extracted from the SMILES strings. Then, we develop HyGNN consisting of a novel attention-based hypergraph edge encoder to get the representation of drugs as hyperedges and a decoder to predict the interactions between drug pairs. Furthermore, we conduct extensive experiments to evaluate our model and compare it with several state-of-the-art methods. Experimental results demonstrate that our proposed HyGNN model effectively predicts DDIs and impressively outperforms the baselines with a maximum ROC-AUC and PR-AUC of 97.9% and 98.1%, respectively.


翻译:药物-药物相互作用(DDIs)可能妨碍药物的功能,甚至在最坏的情况下可能导致不良药物反应(ADRs)。预测所有DDIs是一个具有挑战性的关键问题。 大多数现有的计算模型将来自不同来源的以药物为中心的信息与机器学习分类器中的功能结合起来,用于预测DDIs。然而,这些模型在一些情况下可能会失败,尤其是对于新药物,并且不是所有的信息都可以获得。本文提出了一种新颖的基于超图神经网络(HyGNN)模型,仅基于药物的SMILES字符串进行DDI预测问题。为了捕捉药物相似性,我们从SMILES字符串中提取药物化学亚结构创建超图。然后,我们开发了HyGNN,其中包括一种新型基于注意力机制的超图边编码器,以获取作为超边的药物表示,并且一个解码器来预测药物对之间的相互作用。此外,我们进行了大量的实验来评估我们的模型并将其与几种最先进的方法进行比较。实验结果证明,我们的提出的HyGNN模型有效地预测了DDIs,并且以最大的ROC-AUC和PR-AUC分别达到了97.9%和98.1%,并且明显优于基线模型。

0
下载
关闭预览

相关内容

用于分子Linker设计的等变3D条件扩散模型
专知会员服务
6+阅读 · 2022年10月24日
Drug Discov Today | 机器学习预测小分子pKa的进展和挑战
专知会员服务
8+阅读 · 2022年10月17日
DTI-HETA:基于异构图的图卷积药物-靶标相互作用预测
专知会员服务
18+阅读 · 2022年9月25日
【ICLR 2019】双曲注意力网络,Hyperbolic  Attention Network
专知会员服务
83+阅读 · 2020年6月21日
图卷积神经网络蒸馏知识,Distillating Knowledge from GCN
专知会员服务
95+阅读 · 2020年3月25日
AAAI 2022 | ProtGNN:自解释图神经网络络
PaperWeekly
0+阅读 · 2022年8月22日
Link prediction | 三篇SEAL相关工作小结
AINLP
47+阅读 · 2020年11月17日
【GNN】R-GCN:GCN 在知识图谱中的应用
深度学习自然语言处理
11+阅读 · 2020年5月4日
【GNN】MPNN:消息传递神经网络
深度学习自然语言处理
17+阅读 · 2020年4月11日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
14+阅读 · 2021年7月20日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络络
PaperWeekly
0+阅读 · 2022年8月22日
Link prediction | 三篇SEAL相关工作小结
AINLP
47+阅读 · 2020年11月17日
【GNN】R-GCN:GCN 在知识图谱中的应用
深度学习自然语言处理
11+阅读 · 2020年5月4日
【GNN】MPNN:消息传递神经网络
深度学习自然语言处理
17+阅读 · 2020年4月11日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员