NeurIPS'22上的GNN好文集合 (表示能力、架构设计、图对比/自监督学习、分布偏移、可解释、推荐系统等)

2022 年 9 月 20 日 图与推荐

近日NeurIPS 2022录取结果公布,共提交了10411篇论文,近2665篇论文接受,接受率在25.6%。本文对图神经网络(Graph Neural Networks)相关的论文进行了汇总与整理,涵盖表示能力、架构设计、图对比/自监督学习、分布偏移、可解释、推荐系统、异质/动态/有向图、以及各种下游任务。

NeurIPS 2022 Accepted Papers(nips.cc)

1. GNN

探究模型表达能力

  • How Powerful are K-hop Message Passing Graph Neural Networks
  • Ordered Subgraph Aggregation Networks
  • Convolutional Neural Networks on Graphs with Chebyshev Approximation, Revisited
  • Exponentially Improving the Complexity of Simulating the Weisfeiler-Lehman Test with Graph Neural Networks
  • Understanding Non-linearity in Graph Neural Networks from the Bayesian-Inference Perspective
  • Understanding and Extending Subgraph GNNs by Rethinking Their Symmetries
  • A Practical, Progressively-Expressive GNN

泛化性分析

  • Generalization Analysis of Message Passing Neural Networks on Large Random Graphs

减少Message Passing中的冗余计算

  • Redundancy-Free Message Passing for Graph Neural Networks

Scalability

  • Sketch-GNN: Scalable Graph Neural Networks with Sublinear Training Complexity

捕获长距离依赖

  • Capturing Graphs with Hypo-Elliptic Diffusions
  • MGNNI: Multiscale Graph Neural Networks with Implicit Layers

强化节点表征(通过引入结构,距离特征,etc)

  • Geodesic Graph Neural Network for Efficient Graph Representation Learning
  • Template based Graph Neural Network with Optimal Transport Distances
  • Pseudo-Riemannian Graph Convolutional Networks
  • Neural Approximation of Extended Persistent Homology on Graphs
  • GraphQNTK: the Quantum Neural Tangent Kernel for Graph Data

模型结构设计

  • Graph Scattering beyond Wavelet Shackles
  • Equivariant Graph Hierarchy-based Neural Networks

优化梯度流向

  • Old can be Gold: Better Gradient Flow can make Vanilla-GCNs Great Again

Library

  • Graphein - a Python Library for Geometric Deep Learning and Network Analysis on Biomolecular Structures and Interaction Networks

2. Graph Transformer

  • Recipe for a General, Powerful, Scalable Graph Transformer
  • Hierarchical Graph Transformer with Adaptive Node Sampling
  • Pure Transformers are Powerful Graph Learners
  • Periodic Graph Transformers for Crystal Material Property Prediction

3. 过平滑

  • Not too little, not too much: a theoretical analysis of graph (over)smoothing
  • Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs

4. 图对比学习,图自监督

  • Rethinking and Scaling Up Graph Contrastive Learning: An Extremely Efficient Approach with Group Discrimination
  • Uncovering the Structural Fairness in Graph Contrastive Learning
  • Revisiting Graph Contrastive Learning from the Perspective of Graph Spectrum
  • Decoupled Self-supervised Learning for Non-Homophilous Graphs
  • Understanding Self-Supervised Graph Representation Learning from a Data-Centric Perspective
  • Co-Modality Imbalanced Graph Contrastive Learning
  • Graph Self-supervised Learning with Accurate Discrepancy Learning
  • Contrastive Graph Structure Learning via Information Bottleneck for Recommendation
  • Self-supervised Heterogeneous Graph Pre-training Based on Structural Clustering
  • Does GNN Pretraining Help Molecular Representation?

5. 分布偏移以及OOD问题

  • Learning Invariant Graph Representations Under Distribution Shifts
  • Dynamic Graph Neural Networks Under Spatio-Temporal Distribution Shift
  • Association Graph Learning for Multi-Task Classification with Category Shifts
  • Learning Causally Invariant Representations for Out-of-Distribution Generalization on Graphs
  • Towards Debiased Learning and Out-of-Distribution Detection for Graph Data
  • SizeShiftReg: a Regularization Method for Improving Size-Generalization in Graph Neural Networks
  • Tree Mover's Distance: Bridging Graph Metrics and Stability of Graph Neural Networks

6. 生成式模型

  • Deep Generative Model for Periodic Graphs
  • An efficient graph generative model for navigating ultra-large combinatorial synthesis libraries
  • AgraSSt: Approximate Graph Stein Statistics for Interpretable Assessment of Implicit Graph Generators
  • Evaluating Graph Generative Models with Contrastively Learned Features
  • Molecule Generation by Principal Subgraph Mining and Assembling
  • A Variational Edge Partition Model for Supervised Graph Representation Learning
  • Symmetry-induced Disentanglement on Graphs

7. Meta learning

  • Graph Few-shot Learning with Task-specific Structures

8. 解释性

  • Task-Agnostic Graph Explanations
  • Explaining Graph Neural Networks with Structure-Aware Cooperative Games

9. 知识蒸馏

  • Geometric Distillation for Graph Networks
  • Knowledge Distillation Improves Graph Structure Augmentation for Graph Neural Networks

10. 因果

  • Debiasing Graph Neural Networks via Learning Disentangled Causal Substructure
  • CLEAR: Generative Counterfactual Explanations on Graphs
  • Counterfactual Fairness with Partially Known Causal Graph
  • Large-Scale Differentiable Causal Discovery of Factor Graphs
  • Multi-agent Covering Option Discovery based on Kronecker Product of Factor Graphs

11. 池化

  • High-Order Pooling for Graph Neural Networks with Tensor Decomposition
  • Graph Neural Networks with Adaptive Readouts

12. 推荐系统

  • Graph Convolution Network based Recommender Systems: Learning Guarantee and Item Mixture Powered Strategy

13. 鲁棒性

  • Towards Reasonable Budget Allocation in Untargeted Graph Structure Attacks via Gradient Debias
  • Robust Graph Structure Learning over Images via Multiple Statistical Tests
  • Are Defenses for Graph Neural Networks Robust?
  • Certifying Robust Graph Classification under Orthogonal Gromov-Wasserstein Threats
  • EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural Networks
  • On the Robustness of Graph Neural Diffusion
  • What Makes Graph Neural Networks Miscalibrated?
  • Randomized Message-Interception Smoothing: Gray-box Certificates for Graph Neural Networks

14. 强化学习

  • DHRL: A Graph-Based Approach for Long-Horizon and Sparse Hierarchical Reinforcement Learning
  • Non-Linear Coordination Graphs

15. 隐私保护

  • CryptoGCN: Fast and Scalable Homomorphically Encrypted Graph Convolutional Network Inference
  • Differentially Private Graph Learning via Sensitivity-Bounded Personalized PageRank
  • Private Graph Distance Computation with Improved Error Rate

16. 各种类型的图(异质图,异配图,超图,动态图,时空图,etc)

异质图(Heterogeneous Graphs)

  • Descent Steps of a Relation-Aware Energy Produce Heterogeneous Graph Neural Networks
  • Zero-shot Transfer Learning on Heterogeneous Graphs via Knowledge Transfer Networks

异配图(Non-Homophilous/Heterophilous/Disassortive graphs)

  • Revisiting Heterophily For Graph Neural Networks
  • Simplified Graph Convolution with Heterophily

超图

  • Sparse Hypergraph Community Detection Thresholds in Stochastic Block Model
  • Augmentations in Hypergraph Contrastive Learning: Fabricated and Generative
  • SHINE: SubHypergraph Inductive Neural nEtwork

动态图(dynamic graphs)

  • Neural Temporal Walks: Motif-Aware Representation Learning on Continuous-Time Dynamic Graphs

时空图

  • Learning to Reconstruct Missing Data from Spatiotemporal Graphs with Sparse Observations
  • Provably expressive temporal graph networks
  • AZ-whiteness test: a test for signal uncorrelation on spatio-temporal graphs

有向图

  • Iterative Structural Inference of Directed Graphs
  • Transition to Linearity of General Neural Networks with Directed Acyclic Graph Architecture
  • Modeling Transitivity and Cyclicity in Directed Graphs via Binary Code Box Embeddings
  • Neural Topological Ordering for Computation Graphs

二部图

  • Learning Bipartite Graphs: Heavy Tails and Multiple Components

Feedback graphs

  • Learning on the Edge: Online Learning with Stochastic Feedback Graphs
  • Nearly Optimal Best-of-Both-Worlds Algorithms for Online Learning with Feedback Graphs
  • Stochastic Online Learning with Feedback Graphs: Finite-Time and Asymptotic Optimality

知识图谱

  • Contrastive Language-Image Pre-Training with Knowledge Graphs
  • Rethinking Knowledge Graph Evaluation Under the Open-World Assumption
  • OTKGE: Multi-modal Knowledge Graph Embeddings via Optimal Transport
  • Inductive Logical Query Answering in Knowledge Graphs
  • Learning to Sample and Aggregate: Few-shot Reasoning over Temporal Knowledge Graph
  • Few-shot Relational Reasoning via Pretraining of Connection Subgraph Reconstruction
  • ReFactorGNNs: Revisiting Factorisation-based Models from a Message-Passing Perspective

17. 下游任务

链接预测

  • OOD Link Prediction Generalization Capabilities of Message-Passing GNNs in Larger Test Graphs
  • A Universal Error Measure for Input Predictions Applied to Online Graph Problems
  • Parameter-free Dynamic Graph Embedding for Link Prediction

图分类

  • Label-invariant Augmentation for Semi-Supervised Graph Classification

图聚类

  • Consistency of Constrained Spectral Clustering under Graph Induced Fair Planted Partitions
  • S3GC: Scalable Self-Supervised Graph Clustering
  • Stars: Tera-Scale Graph Building for Clustering and Learning
  • Hierarchical Agglomerative Graph Clustering in Poly-Logarithmic Depth

图像分类

  • Vision GNN: An Image is Worth Graph of Nodes

异常值检测

  • Dual-discriminative Graph Neural Network for Imbalanced Graph-level Anomaly Detection

分子图

  • ComENet: Towards Complete and Efficient Message Passing for 3D Molecular Graphs

时间序列预测

  • Multivariate Time-Series Forecasting with Temporal Polynomial Graph Neural Networks

电路图

  • Versatile Multi-stage Graph Neural Network for Circuit Representation
  • NeuroSchedule: A Novel Effective GNN-based Scheduling Method for High-level Synthesis

Robot manipulation

  • Learning-based Manipulation Planning in Dynamic Environments Using GNNs and Temporal Encoding

17. Algorithms

Objective-space decomposition algorithms(ODAs)

  • Graph Learning Assisted Multi-Objective Integer Programming

Dynamic Programming (DP)

  • Graph Neural Networks are Dynamic Programmers

Bandits

  • Graph Neural Network Bandits
  • Maximizing and Satisficing in Multi-armed Bandits with Graph Information

Link selection

  • Learning to Navigate Wikipedia with Graph Diffusion Models

Graph search

  • Graph Reordering for Cache-Efficient Near Neighbor Search

Densest subgraph problem (DSG) and the densest subgraph local decomposition problem

  • Faster and Scalable Algorithms for Densest Subgraph and Decomposition

Optimization

  • Semi-Supervised Learning with Decision Trees: Graph Laplacian Tree Alternating Optimization

Dimension Reduction

  • A Probabilistic Graph Coupling View of Dimension Reduction

Physics

  • Learning Rigid Body Dynamics with Lagrangian Graph Neural Network
  • PhysGNN: A Physics--Driven Graph Neural Network Based Model for Predicting Soft Tissue Deformation in Image-Guided Neurosurgery
  • Physics-Embedded Neural Networks: -Equivariant Graph Neural PDE Solvers

图相似度计算

  • Efficient Graph Similarity Computation with Alignment Regularization
  • GREED: A Neural Framework for Learning Graph Distance Functions

NP-Hard problems

  • Learning NP-Hard Joint-Assignment planning using GNN: Inference on a Random Graph and Provable Auction-Fitted Q-iteration
  • Learning to Compare Nodes in Branch and Bound with Graph Neural Networks

18. Miscellaneous

  • Maximum Common Subgraph Guided Graph Retrieval: Late and Early Interaction Networks
  • Learning on Arbitrary Graph Topologies via Predictive Coding
  • Graph Agnostic Estimators with Staggered Rollout Designs under Network Interference
  • Exact Shape Correspondence via 2D graph convolution
  • Graph Coloring via Neural Networks for Haplotype Assembly and Viral Quasispecies Reconstruction
  • Thinned random measures for sparse graphs with overlapping communities
  • Learning Physical Dynamics with Subequivariant Graph Neural Networks
  • On the Discrimination Risk of Mean Aggregation Feature Imputation in Graphs


登录查看更多
3

相关内容

【ICML2022】基于随机注意力机制的可解释和广义图学习
专知会员服务
33+阅读 · 2022年8月7日
专知会员服务
53+阅读 · 2021年6月14日
【WWW2021】用优化框架解释和统一图神经网络
专知会员服务
45+阅读 · 2021年2月1日
【NeurIPS 2020】图神经网络GNN架构设计
专知会员服务
84+阅读 · 2020年11月19日
[ICML2020]层次间消息传递的分子图学习
专知会员服务
34+阅读 · 2020年6月27日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
【ICLR2020】五篇Open代码的GNN论文
专知会员服务
48+阅读 · 2019年10月2日
NeurIPS 2022 | 利用子图和结点的对称性提升子图GNN
NeurIPS'22放榜。投稿1W+,录用2k+,GNN依然火热。
图与推荐
1+阅读 · 2022年9月15日
ICLR'22 | 图机器学习最近都在研究什么?
图与推荐
1+阅读 · 2021年11月19日
ICML'21 | 六篇图神经网络论文精选(模型鲁棒性)
图与推荐
0+阅读 · 2021年10月18日
ICML'21 | 五篇图神经网络论文精选
图与推荐
1+阅读 · 2021年10月15日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
1+阅读 · 2022年11月26日
Arxiv
57+阅读 · 2021年5月3日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
102+阅读 · 2020年3月4日
Arxiv
15+阅读 · 2020年2月5日
Deep Graph Infomax
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关VIP内容
【ICML2022】基于随机注意力机制的可解释和广义图学习
专知会员服务
33+阅读 · 2022年8月7日
专知会员服务
53+阅读 · 2021年6月14日
【WWW2021】用优化框架解释和统一图神经网络
专知会员服务
45+阅读 · 2021年2月1日
【NeurIPS 2020】图神经网络GNN架构设计
专知会员服务
84+阅读 · 2020年11月19日
[ICML2020]层次间消息传递的分子图学习
专知会员服务
34+阅读 · 2020年6月27日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
【ICLR2020】五篇Open代码的GNN论文
专知会员服务
48+阅读 · 2019年10月2日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
相关论文
Arxiv
1+阅读 · 2022年11月26日
Arxiv
57+阅读 · 2021年5月3日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
102+阅读 · 2020年3月4日
Arxiv
15+阅读 · 2020年2月5日
Deep Graph Infomax
Arxiv
17+阅读 · 2018年12月21日
Top
微信扫码咨询专知VIP会员