Drug-drug interaction(DDI) prediction is an important task in the medical health machine learning community. This study presents a new method, multi-view graph contrastive representation learning for drug-drug interaction prediction, MIRACLE for brevity, to capture inter-view molecule structure and intra-view interactions between molecules simultaneously. MIRACLE treats a DDI network as a multi-view graph where each node in the interaction graph itself is a drug molecular graph instance. We use GCNs and bond-aware attentive message passing networks to encode DDI relationships and drug molecular graphs in the MIRACLE learning stage, respectively. Also, we propose a novel unsupervised contrastive learning component to balance and integrate the multi-view information. Comprehensive experiments on multiple real datasets show that MIRACLE outperforms the state-of-the-art DDI prediction models consistently.
翻译:药物-药物相互作用(DDI)预测是医学保健机学习界的一项重要任务。本研究为药物-药物相互作用预测提供了一种新的方法,即多视图图形对比图,为药物-药物相互作用预测提供了对照图,MIRACLE为简洁,同时捕捉不同视分子结构和不同视线之间相互作用。MIRACLE将DDI网络作为一个多视图图,其中互动图中的每个节点本身就是一个药物分子图例。我们使用GCNs和感应网来分别将DDI关系和药物分子图编码在MIRACLE学习阶段。此外,我们提出一个新的、不受监督的对比学习部分,以平衡和整合多视图信息。关于多个真实数据集的全面实验显示,MIRACLE始终超越了最先进的DDI预测模型。