图神经网络 (GNN) 是一种连接模型,它通过图的节点之间的消息传递来捕捉图的依赖关系。与标准神经网络不同的是,图神经网络保留了一种状态,可以表示来自其邻域的具有任意深度的信息。近年来,图神经网络(GNN)在社交网络、知识图、推荐系统、问答系统甚至生命科学等各个领域得到了越来越广泛的应用。

知识荟萃

图神经网络(Graph Neural Networks, GNN)专知荟萃

入门

综述

  • A Comprehensive Survey on Graph Neural Networks. Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, Philip S. Yu. 2019
    https://arxiv.org/pdf/190-00596.pdf
  • Relational inductive biases, deep learning, and graph networks. Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, Caglar Gulcehre, Francis Song, Andrew Ballard, Justin Gilmer, George Dahl, Ashish Vaswani, Kelsey Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet Kohli, Matt Botvinick, Oriol Vinyals, Yujia Li, Razvan Pascanu. 2018.
    https://arxiv.org/pdf/1806.0126-pdf
  • Attention models in graphs. John Boaz Lee, Ryan A. Rossi, Sungchul Kim, Nesreen K. Ahmed, Eunyee Koh. 2018.
    https://arxiv.org/pdf/1807.07984.pdf
  • Deep learning on graphs: A survey. Ziwei Zhang, Peng Cui and Wenwu Zhu. 2018.
    https://arxiv.org/pdf/1812.04202.pdf
  • Graph Neural Networks: A Review of Methods and Applications. Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Maosong Sun. 2018
    https://arxiv.org/pdf/1812.08434.pdf
  • Geometric deep learning: going beyond euclidean data. Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, Pierre Vandergheynst. 2016.
    https://arxiv.org/pdf/161-08097.pdf

进阶论文

Recurrent Graph Neural Networks

Convolutional Graph Neural Networks

Spectral and Spatial

Architecture

Attention Mechanisms

Convolution

Training Methods

Pooling

Bayesian

Analysis

GAE

Spatial-Temporal Graph Neural Networks

应用

Physics

Knowledge Graph

Recommender Systems

  • STAR-GCN: Stacked and Reconstructed Graph Convolutional Networks for Recommender Systems. Jiani Zhang, Xingjian Shi, Shenglin Zhao, Irwin King. IJCAI 2019.
    https://arxiv.org/pdf/1905.13129.pdf

  • Binarized Collaborative Filtering with Distilling Graph Convolutional Networks. Haoyu Wang, Defu Lian, Yong Ge. IJCAI 2019.
    https://arxiv.org/pdf/1906.01829.pdf

  • Graph Contextualized Self-Attention Network for Session-based Recommendation. Chengfeng Xu, Pengpeng Zhao, Yanchi Liu, Victor S. Sheng, Jiajie Xu, Fuzhen Zhuang, Junhua Fang, Xiaofang Zhou. IJCAI 2019.
    https://www.ijcai.org/proceedings/2019/0547.pdf

  • Session-based Recommendation with Graph Neural Networks. Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, Tieniu Tan. AAAI 2019.
    https://arxiv.org/pdf/181-00855.pdf

  • Geometric Hawkes Processes with Graph Convolutional Recurrent Neural Networks. Jin Shang, Mingxuan Sun. AAAI 2019.
    https://jshang2.github.io/pubs/geo.pdf

  • Knowledge-aware Graph Neural Networks with Label Smoothness Regularization for Recommender Systems. Hongwei Wang, Fuzheng Zhang, Mengdi Zhang, Jure Leskovec, Miao Zhao, Wenjie Li, Zhongyuan Wang. KDD 2019.
    https://arxiv.org/pdf/1905.04413

  • Exact-K Recommendation via Maximal Clique Optimization. Yu Gong, Yu Zhu, Lu Duan, Qingwen Liu, Ziyu Guan, Fei Sun, Wenwu Ou, Kenny Q. Zhu. KDD 2019.
    https://arxiv.org/pdf/1905.07089

  • KGAT: Knowledge Graph Attention Network for Recommendation. Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, Tat-Seng Chua. KDD 2019.
    https://arxiv.org/pdf/1905.07854

  • Knowledge Graph Convolutional Networks for Recommender Systems. Hongwei Wang, Miao Zhao, Xing Xie, Wenjie Li, Minyi Guo. WWW 2019.
    https://arxiv.org/pdf/1904.12575.pdf

  • Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recommender Systems. Qitian Wu, Hengrui Zhang, Xiaofeng Gao, Peng He, Paul Weng, Han Gao, Guihai Chen. WWW 2019.
    https://arxiv.org/pdf/1903.10433.pdf

  • Graph Neural Networks for Social Recommendation. Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, Dawei Yin. WWW 2019.
    https://arxiv.org/pdf/1902.07243.pdf

  • Graph Convolutional Neural Networks for Web-Scale Recommender Systems. Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, Jure Leskovec. KDD 2018.
    https://arxiv.org/abs/1806.01973

  • Geometric Matrix Completion with Recurrent Multi-Graph Neural Networks. Federico Monti, Michael M. Bronstein, Xavier Bresson. NIPS 2017.
    https://arxiv.org/abs/1704.06803

  • Graph Convolutional Matrix Completion. Rianne van den Berg, Thomas N. Kipf, Max Welling. 2017.
    https://arxiv.org/abs/1706.02263

Computer Vision

Natural Language Processing

Others

Tutorial

视频教程

代码

领域专家

VIP内容

我们提出了GNNAutoScale (GAS),一个扩展任意消息传递GNN到大型图的框架。GAS通过利用之前的训练迭代的历史嵌入来修剪计算图的整个子树,从而在不丢失任何数据的情况下,使输入节点大小的GPU内存消耗保持不变。虽然现有的解决方案由于边缘的子采样或不可训练的传播而削弱了消息传递的表达能力,但我们的方法被证明能够保持原始GNN的表达能力。我们通过提供历史嵌入的近似误差边界来实现这一点,并展示了如何在实践中加强它们。经验表明,我们的框架PyGAS (PYTORCH geometry 的一个易于使用的扩展)的实际实现是既快速又内存效率高的,学习表现性节点表示,其性能与非扩展对应的性能非常相似,并在大规模图上达到了最先进的性能。

https://arxiv.org/abs/2106.05609

成为VIP会员查看完整内容
0
1

最新论文

With the wide-spread availability of complex relational data, semi-supervised node classification in graphs has become a central machine learning problem. Graph neural networks are a recent class of easy-to-train and accurate methods for this problem that map the features in the neighborhood of a node to its label, but they ignore label correlation during inference and their predictions are difficult to interpret. On the other hand, collective classification is a traditional approach based on interpretable graphical models that explicitly model label correlations. Here, we introduce a model that combines the advantages of these two approaches, where we compute the marginal probabilities in a conditional random field, similar to collective classification, and the potentials in the random field are learned through end-to-end training, akin to graph neural networks. In our model, potentials on each node only depend on that node's features, and edge potentials are learned via a coupling matrix. This structure enables simple training with interpretable parameters, scales to large networks, naturally incorporates training labels at inference, and is often more accurate than related approaches. Our approach can be viewed as either an interpretable message-passing graph neural network or a collective classification method with higher capacity and modernized training.

0
0
下载
预览
Top