图神经网络 (GNN) 是一种连接模型,它通过图的节点之间的消息传递来捕捉图的依赖关系。与标准神经网络不同的是,图神经网络保留了一种状态,可以表示来自其邻域的具有任意深度的信息。近年来,图神经网络(GNN)在社交网络、知识图、推荐系统、问答系统甚至生命科学等各个领域得到了越来越广泛的应用。

知识荟萃

图神经网络(Graph Neural Networks, GNN)专知荟萃

入门

综述

  • A Comprehensive Survey on Graph Neural Networks. Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, Philip S. Yu. 2019
    https://arxiv.org/pdf/190-00596.pdf
  • Relational inductive biases, deep learning, and graph networks. Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, Caglar Gulcehre, Francis Song, Andrew Ballard, Justin Gilmer, George Dahl, Ashish Vaswani, Kelsey Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet Kohli, Matt Botvinick, Oriol Vinyals, Yujia Li, Razvan Pascanu. 2018.
    https://arxiv.org/pdf/1806.0126-pdf
  • Attention models in graphs. John Boaz Lee, Ryan A. Rossi, Sungchul Kim, Nesreen K. Ahmed, Eunyee Koh. 2018.
    https://arxiv.org/pdf/1807.07984.pdf
  • Deep learning on graphs: A survey. Ziwei Zhang, Peng Cui and Wenwu Zhu. 2018.
    https://arxiv.org/pdf/1812.04202.pdf
  • Graph Neural Networks: A Review of Methods and Applications. Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Maosong Sun. 2018
    https://arxiv.org/pdf/1812.08434.pdf
  • Geometric deep learning: going beyond euclidean data. Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, Pierre Vandergheynst. 2016.
    https://arxiv.org/pdf/161-08097.pdf

进阶论文

Recurrent Graph Neural Networks

Convolutional Graph Neural Networks

Spectral and Spatial

Architecture

Attention Mechanisms

Convolution

Training Methods

Pooling

Bayesian

Analysis

GAE

Spatial-Temporal Graph Neural Networks

应用

Physics

Knowledge Graph

Recommender Systems

  • STAR-GCN: Stacked and Reconstructed Graph Convolutional Networks for Recommender Systems. Jiani Zhang, Xingjian Shi, Shenglin Zhao, Irwin King. IJCAI 2019.
    https://arxiv.org/pdf/1905.13129.pdf

  • Binarized Collaborative Filtering with Distilling Graph Convolutional Networks. Haoyu Wang, Defu Lian, Yong Ge. IJCAI 2019.
    https://arxiv.org/pdf/1906.01829.pdf

  • Graph Contextualized Self-Attention Network for Session-based Recommendation. Chengfeng Xu, Pengpeng Zhao, Yanchi Liu, Victor S. Sheng, Jiajie Xu, Fuzhen Zhuang, Junhua Fang, Xiaofang Zhou. IJCAI 2019.
    https://www.ijcai.org/proceedings/2019/0547.pdf

  • Session-based Recommendation with Graph Neural Networks. Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, Tieniu Tan. AAAI 2019.
    https://arxiv.org/pdf/181-00855.pdf

  • Geometric Hawkes Processes with Graph Convolutional Recurrent Neural Networks. Jin Shang, Mingxuan Sun. AAAI 2019.
    https://jshang2.github.io/pubs/geo.pdf

  • Knowledge-aware Graph Neural Networks with Label Smoothness Regularization for Recommender Systems. Hongwei Wang, Fuzheng Zhang, Mengdi Zhang, Jure Leskovec, Miao Zhao, Wenjie Li, Zhongyuan Wang. KDD 2019.
    https://arxiv.org/pdf/1905.04413

  • Exact-K Recommendation via Maximal Clique Optimization. Yu Gong, Yu Zhu, Lu Duan, Qingwen Liu, Ziyu Guan, Fei Sun, Wenwu Ou, Kenny Q. Zhu. KDD 2019.
    https://arxiv.org/pdf/1905.07089

  • KGAT: Knowledge Graph Attention Network for Recommendation. Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, Tat-Seng Chua. KDD 2019.
    https://arxiv.org/pdf/1905.07854

  • Knowledge Graph Convolutional Networks for Recommender Systems. Hongwei Wang, Miao Zhao, Xing Xie, Wenjie Li, Minyi Guo. WWW 2019.
    https://arxiv.org/pdf/1904.12575.pdf

  • Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recommender Systems. Qitian Wu, Hengrui Zhang, Xiaofeng Gao, Peng He, Paul Weng, Han Gao, Guihai Chen. WWW 2019.
    https://arxiv.org/pdf/1903.10433.pdf

  • Graph Neural Networks for Social Recommendation. Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, Dawei Yin. WWW 2019.
    https://arxiv.org/pdf/1902.07243.pdf

  • Graph Convolutional Neural Networks for Web-Scale Recommender Systems. Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, Jure Leskovec. KDD 2018.
    https://arxiv.org/abs/1806.01973

  • Geometric Matrix Completion with Recurrent Multi-Graph Neural Networks. Federico Monti, Michael M. Bronstein, Xavier Bresson. NIPS 2017.
    https://arxiv.org/abs/1704.06803

  • Graph Convolutional Matrix Completion. Rianne van den Berg, Thomas N. Kipf, Max Welling. 2017.
    https://arxiv.org/abs/1706.02263

Computer Vision

Natural Language Processing

Others

Tutorial

视频教程

代码

领域专家

VIP内容

摘要: 在大数据时代,图被用于各种领域表示具有复杂联系的数据.图计算应用被广泛用于各种领域,以挖掘图数据中潜在的价值.图计算应用特有的不规则执行行为,引发了不规则负载、密集读改写更新操作、不规则访存和不规则通信等挑战.现有通用架构无法有效地应对上述挑战.为了克服加速图计算应用面临的挑战,大量的图计算硬件加速架构设计被提出.它们为图计算应用定制了专用的计算流水线、访存子系统、存储子系统和通信子系统.得益于这些定制的硬件设计,图计算加速架构相比于传统的通用处理器架构,在性能和能效上均取得了显著的提升.为了让相关的研究学者深入了解图计算硬件加速架构,首先基于计算机的金字塔组织结构,从上到下对现有工作进行分类和总结,并以多个完整架构实例分析应用于不同层次的优化技术之间的关系.接着以图神经网络加速架构的具体案例讨论新兴图计算应用的加速架构设计.最后对该领域的前沿研究方向进行了总结,并放眼于未来探讨图计算加速架构的发展趋势.

成为VIP会员查看完整内容
0
15

最新内容

Backdoor attacks represent a serious threat to neural network models. A backdoored model will misclassify the trigger-embedded inputs into an attacker-chosen target label while performing normally on other benign inputs. There are already numerous works on backdoor attacks on neural networks, but only a few works consider graph neural networks (GNNs). As such, there is no intensive research on explaining the impact of trigger injecting position on the performance of backdoor attacks on GNNs. To bridge this gap, we conduct an experimental investigation on the performance of backdoor attacks on GNNs. We apply two powerful GNN explainability approaches to select the optimal trigger injecting position to achieve two attacker objectives -- high attack success rate and low clean accuracy drop. Our empirical results on benchmark datasets and state-of-the-art neural network models demonstrate the proposed method's effectiveness in selecting trigger injecting position for backdoor attacks on GNNs. For instance, on the node classification task, the backdoor attack with trigger injecting position selected by GraphLIME reaches over $84 \%$ attack success rate with less than $2.5 \%$ accuracy drop

0
0
下载
预览

最新论文

Backdoor attacks represent a serious threat to neural network models. A backdoored model will misclassify the trigger-embedded inputs into an attacker-chosen target label while performing normally on other benign inputs. There are already numerous works on backdoor attacks on neural networks, but only a few works consider graph neural networks (GNNs). As such, there is no intensive research on explaining the impact of trigger injecting position on the performance of backdoor attacks on GNNs. To bridge this gap, we conduct an experimental investigation on the performance of backdoor attacks on GNNs. We apply two powerful GNN explainability approaches to select the optimal trigger injecting position to achieve two attacker objectives -- high attack success rate and low clean accuracy drop. Our empirical results on benchmark datasets and state-of-the-art neural network models demonstrate the proposed method's effectiveness in selecting trigger injecting position for backdoor attacks on GNNs. For instance, on the node classification task, the backdoor attack with trigger injecting position selected by GraphLIME reaches over $84 \%$ attack success rate with less than $2.5 \%$ accuracy drop

0
0
下载
预览
Top