Graph Convolutional Networks (GCNs) have been widely applied in various fields due to their significant power on processing graph-structured data. Typical GCN and its variants work under a homophily assumption (i.e., nodes with same class are prone to connect to each other), while ignoring the heterophily which exists in many real-world networks (i.e., nodes with different classes tend to form edges). Existing methods deal with heterophily by mainly aggregating higher-order neighborhoods or combing the immediate representations, which leads to noise and irrelevant information in the result. But these methods did not change the propagation mechanism which works under homophily assumption (that is a fundamental part of GCNs). This makes it difficult to distinguish the representation of nodes from different classes. To address this problem, in this paper we design a novel propagation mechanism, which can automatically change the propagation and aggregation process according to homophily or heterophily between node pairs. To adaptively learn the propagation process, we introduce two measurements of homophily degree between node pairs, which is learned based on topological and attribute information, respectively. Then we incorporate the learnable homophily degree into the graph convolution framework, which is trained in an end-to-end schema, enabling it to go beyond the assumption of homophily. More importantly, we theoretically prove that our model can constrain the similarity of representations between nodes according to their homophily degree. Experiments on seven real-world datasets demonstrate that this new approach outperforms the state-of-the-art methods under heterophily or low homophily, and gains competitive performance under homophily.


翻译:GCN及其变体在同一个假设下工作(即,同一类的节点容易相互连接),而忽视许多真实世界网络中存在的偏差性(即,不同类的节点往往形成边缘)。现有方法与不同领域格格不入,主要汇集较高级的邻里或梳理直接表达方式,结果导致噪音和不相干的信息。但这些方法并没有改变在同级假设下运作的传播机制(即,同一类的节点容易相互连接),而忽视许多真实世界网络中存在的偏差性(即,不同类的节点往往形成边缘 ) 。 现有方法与不同领域格格格不入,主要通过聚集较高级的邻里区或梳理直接代表方式,从而导致结果产生噪音和不相干的信息。但是这些方法并没有改变在同级假设下运作的传播机制(这是GCNs的一个基本部分 ) 。为了解决这个问题,我们设计了一个新的传播机制,它可以自动改变传播和汇总过程,在交替模式中,我们从正调的相互比较的角度,我们用两种程度来测量不同等级的等级的等级的等级,我们之间的等级,在上学习了更接近的正态的正态的正变的内,然后将数据转化为的顺序中学习了。

20
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【ICLR2020-哥伦比亚大学】多关系图神经网络CompGCN
专知会员服务
49+阅读 · 2020年4月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
KDD2021 | 最新GNN官方教程
机器学习与推荐算法
2+阅读 · 2021年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
Simplicial Attention Networks
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Interest-aware Message-Passing GCN for Recommendation
Arxiv
12+阅读 · 2021年2月19日
Arxiv
19+阅读 · 2021年2月4日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
KDD2021 | 最新GNN官方教程
机器学习与推荐算法
2+阅读 · 2021年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关论文
Simplicial Attention Networks
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Interest-aware Message-Passing GCN for Recommendation
Arxiv
12+阅读 · 2021年2月19日
Arxiv
19+阅读 · 2021年2月4日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
23+阅读 · 2018年10月1日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员