How can we estimate the importance of nodes in a knowledge graph (KG)? A KG is a multi-relational graph that has proven valuable for many tasks including question answering and semantic search. In this paper, we present GENI, a method for tackling the problem of estimating node importance in KGs, which enables several downstream applications such as item recommendation and resource allocation. While a number of approaches have been developed to address this problem for general graphs, they do not fully utilize information available in KGs, or lack flexibility needed to model complex relationship between entities and their importance. To address these limitations, we explore supervised machine learning algorithms. In particular, building upon recent advancement of graph neural networks (GNNs), we develop GENI, a GNN-based method designed to deal with distinctive challenges involved with predicting node importance in KGs. Our method performs an aggregation of importance scores instead of aggregating node embeddings via predicate-aware attention mechanism and flexible centrality adjustment. In our evaluation of GENI and existing methods on predicting node importance in real-world KGs with different characteristics, GENI achieves 5-17% higher NDCG@100 than the state of the art.


翻译:如何估算知识图( KG) 中节点的重要性? KG 是一个多关系图,对于包括答题和语义搜索在内的许多任务来说很有价值。在本文件中,我们介绍GEN,这是解决KG中估计节点重要性问题的一种方法,它使诸如项目建议和资源分配等若干下游应用成为可能。虽然已经为一般图表制定了一些方法来解决这一问题,但它们没有充分利用在KGs中可获得的信息,或者缺乏必要的灵活性来模拟实体之间的复杂关系及其重要性。为了解决这些局限性,我们探索了受监督的机器学习算法。特别是,在最近推进图形神经网络的基础上,我们开发了GENI,这是一种基于GNN的方法,旨在应对预测KGs中节点重要性方面的独特挑战。我们的方法是对重要性分数进行汇总,而不是通过上游- 觉察注意机制和灵活的核心调整将节点集中在一起。在我们对GNI 和以不同特性预测真实世界KGs节点重要性的现有方法的评估中,GNI 以不同特性为基础,我们开发了GNNCs 5-17% 。

25
下载
关闭预览

相关内容

【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
图卷积神经网络蒸馏知识,Distillating Knowledge from GCN
专知会员服务
95+阅读 · 2020年3月25日
【ICLR2020-】基于记忆的图网络,MEMORY-BASED GRAPH NETWORKS
专知会员服务
110+阅读 · 2020年2月22日
【AAAI2020知识图谱论文概述】Knowledge Graphs @ AAAI 2020
专知会员服务
134+阅读 · 2020年2月13日
17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
172+阅读 · 2020年2月13日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
已删除
Arxiv
32+阅读 · 2020年3月23日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
Signed Graph Attention Networks
Arxiv
7+阅读 · 2019年9月5日
Arxiv
4+阅读 · 2018年7月4日
Arxiv
7+阅读 · 2018年3月21日
Arxiv
8+阅读 · 2018年3月17日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关论文
已删除
Arxiv
32+阅读 · 2020年3月23日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
Signed Graph Attention Networks
Arxiv
7+阅读 · 2019年9月5日
Arxiv
4+阅读 · 2018年7月4日
Arxiv
7+阅读 · 2018年3月21日
Arxiv
8+阅读 · 2018年3月17日
Top
微信扫码咨询专知VIP会员