项目名称: 分数发展方程的基本理论与最优控制
项目编号: No.11271309
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 周勇
作者单位: 湘潭大学
项目金额: 60万元
中文摘要: 分数微分方程在科学与工程的许多学科领域有广泛的应用,如:物理学、力学、电学、化学、生物学和经济学等,近年来,其理论研究已成为国际上一个活跃的研究领域,许多新的理论问题有待解决。由于分数阶导数和整数阶导数存在本质的差异,因此,整数阶微分方程的一些理论不能平行地推广到分数微分方程,如发展方程适度解的定义等,需要探索新的研究途径。本项目的主要内容包括:分数泛函发展方程Cauchy问题适度解的存在唯一性,周期边值问题、可控性与最优控制;分数脉冲发展方程片段连续适度解的存在性与最优脉冲反馈控制;Hibert空间中分数随机发展方程的Cauchy问题适度解的局部存在性、整体存在性及最优控制。这些问题的解决或实质性的进展将促进分数微分方程理论的发展,也将给分数微分方程的数值计算和广泛应用提供必要的理论基础。
中文关键词: 分数发展方程;基本理论;控制;脉冲;随机发展包含
英文摘要: Based on the wildly applications in many fields of engineering and sciences such as physics, mechanics, electricity, chemistry, biology and economics, theoretical research on fractional differential equations is active and extensive around the world in the recent years. There have been many new theoretical problems unresolved as yet. Since there are essential differences between fractional derivatives and integer derivatives, the theory for integer order differential equations, for example, the definition of mild solutions for evolution equations can not be extend to fractional order differential equations. It is necessary to investige new methods. The main contents of this project include: 1. Existence and uniqueness of mild solutions for Cauchy problem, periodic boundary value problems, controllability and optimal control of fractional evolution equations. 2. Existence of piece-continuous mild solutions, and optimal impulsive feedback control of fractional impulsive evolution equations. 3. The local existence and global existence of solutions for Cauchy problems, and optimal control of fractional stochastic evolution equations in Hibert spaces. The substantial advances and restuls will enrich the theory of fractional differential equations and provide some theoretical foundations for numerical computations
英文关键词: Fractional evolution equations;Basic theory;Control;Impulses;Stochastic evolution inclusions