项目名称: 变分方法与非线性偏微分方程前沿问题

项目编号: No.11271353

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 李树杰

作者单位: 中国科学院数学与系统科学研究院

项目金额: 56万元

中文摘要: 本项目拟应用现代非线性分析的变分方法和拓扑方法等多种工具研究以下重要问题: 1.Bose-Einstein凝聚态和非线性光学中的变分问题,Schr?dinger 方程(组)解的存在性、性质,多参数分歧结构; 2.自由边界问题和生物种群竞争极限系统中的变分问题; 3. 弱光滑泛函的 Morse理论与拟线性椭圆方程,发展新的Banach空间Morse理论;4.极大极小理论进一步发展和 Fucik 谱; 5.Kirchhoff-type 非局部问题多解、变号解存在性,相应的特征值问题. 本项目是当前国际上的前沿课题, 是我国数学研究的强项之一, 是非线性分析领域中十分活跃的方向,具有深刻的物理、几何、生物学背景,因而具有重要的理论意义和研究价值,这些问题的解决将极大的推进非线性分析理论与应用的发展。

中文关键词: 变分法;临界点;薛定谔方程(组);Nehari型环绕及多解问题;竞争系统

英文摘要: We try to use variational methods and topological methods to consider the following important problems: 1. Variational problems arising from Bose-Einstein Consendates and nonlinear Kerr-like photofractive media, study existence of solutions for Schrodinger equations or systems, properties of solutions, structure of bifurcation with multiple parameters; 2. Free boundary problems and varitional problems from limit system of competing systems; 3. Morse theory of weakly smooth functional and in Banach space and study quasilinear elliptic equations, develop Morse theory in Banach spaces; 4. Develop new minimax theory and study Fucik spectrum; 5. Existence of solutions and multiple sulotions of nonlocal Kirchhoff-type elliptic equations or systems, and the corresponding eigenvalue problems. This project is the front of nonlinear analysis in the world, the research of this field is strong in China, it is an active direction in nonlinear analysis, it has deep background of physics,geometry and biology, therefore it is important and valuable to study. The theory and application of nonlinear analysis will be pushed greatly once these problems are solved.

英文关键词: Variational methods;critical point;Schrodinger equation;Nehari type linking and multiple solutions;competing system

成为VIP会员查看完整内容
2

相关内容

深度学习在路由问题中的最新进展
专知会员服务
18+阅读 · 2022年3月6日
专知会员服务
13+阅读 · 2021年10月9日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
专知会员服务
15+阅读 · 2021年3月4日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
【斯坦福大学】矩阵对策的协调方法,89页pdf
专知会员服务
25+阅读 · 2020年9月18日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
NVIDIA 招GNN加速方向实习生,GPU超多~
图与推荐
0+阅读 · 2022年1月24日
【优博微展2019】李志泽:简单快速的机器学习优化方法
清华大学研究生教育
14+阅读 · 2019年10月8日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
41+阅读 · 2019年8月9日
贝叶斯机器学习前沿进展
机器学习研究会
21+阅读 · 2018年1月21日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2022年4月20日
小贴士
相关主题
相关VIP内容
深度学习在路由问题中的最新进展
专知会员服务
18+阅读 · 2022年3月6日
专知会员服务
13+阅读 · 2021年10月9日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
专知会员服务
15+阅读 · 2021年3月4日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
【斯坦福大学】矩阵对策的协调方法,89页pdf
专知会员服务
25+阅读 · 2020年9月18日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
相关资讯
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
NVIDIA 招GNN加速方向实习生,GPU超多~
图与推荐
0+阅读 · 2022年1月24日
【优博微展2019】李志泽:简单快速的机器学习优化方法
清华大学研究生教育
14+阅读 · 2019年10月8日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
41+阅读 · 2019年8月9日
贝叶斯机器学习前沿进展
机器学习研究会
21+阅读 · 2018年1月21日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员