项目名称: 两类分数阶发展方程解的适定性及吸引子
项目编号: No.11501289
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 数理科学和化学
项目作者: 岳高成
作者单位: 南京航空航天大学
项目金额: 18万元
中文摘要: 本项目利用Fourier分析方法研究空间分数阶发展型方程在合适的函数空间中解的适定性以及解半群的长时间渐近行为问题。通过利用Littlewood-Paley 理论和Strichartz 估计,研究分数阶反应扩散方程在临界Besov空间中解的适定性,研究带有分数阶阻尼且具有临界增长指数的波方程解的适定性以及这两类方程在平衡点附近不变流形和吸引子的存在性、正则性,这些问题是偏微分方程领域的前沿问题,也是无穷维动力系统领域所关心的问题,可望本项目能够帮助人们更好的理解出现在应用科学中的分数阶发展方程。
中文关键词: 非线性分析;发展方程;解的存在性;吸引子;平衡点
英文摘要: This project is devoted to the well-posedness of solutions and the long time asymptotic behavior of solutions semigroups for a class of the fractional evolution equations in the appropriate functional spaces by using the methods Fourier analysis. By employing Littlewood-Paley theory and Strichartz estimates, we investigate the well-posedness of solutions to the fractional reactin-difusion equation in the critical Besov space, the wave equation with the fractional damping term and critical growth exponent and the existence and regularity of the invariant manifolds in the vicinity of an equilibrium and attractor for two classes of such equations. These problems are not only frontier in the fields of PDEs but also concerned about infinite dimensional dynamical systems. It is expected that the proposed studies will lead to a better understanding of the fractal order evolutionary equations arising from applied science.
英文关键词: Nonlinear Analysis;Evolution equation;Existence of solutions;Attractor;Equilibrium point