We formulate the quadratic eigenvalue problem underlying the mathematical model of a linear vibrational system as an eigenvalue problem of a diagonal-plus-low-rank matrix $A$. The eigenvector matrix of $A$ has a Cauchy-like structure. Optimal viscosities are those for which $trace(X)$ is minimal, where $X$ is the solution of the Lyapunov equation $AX+XA^{*}=GG^{*}$. Here $G$ is a low-rank matrix which depends on the eigenfrequencies that need to be damped. After initial eigenvalue decomposition of linearized problem which requires $O(n^3)$ operations, our algorithm computes optimal viscosities for each choice of external dampers in $O(n^2)$ operations, provided that the number of dampers is small. Hence, the subsequent optimization is order of magnitude faster than in the standard approach which solves Lyapunov equation in each step, thus requiring $O(n^3)$ operations. Our algorithm is based on $O(n^2)$ eigensolver for complex symmetric diagonal-plus-rank-one matrices and fast $O(n^2)$ multiplication of linked Cauchy-like matrices.
翻译:我们将线性振动系统的数学模型中的二次二次元值问题作为线性振动系统的数学模型的二次元值问题,作为需要筑坝的双亚低基基体的二次元值问题。 $A$的二次元矩阵有一个类似卡松的结构。 最优的粘度是美元( X) 最低的, 美元是Lyapunov 方程式 $AX+XA ⁇ GG ⁇ $的解决方案。 这里的美元是一个低级矩阵, 取决于需要建坝的二次元值问题。 在需要O( n3) 美元操作的线性问题的初始二次元值脱压缩后, 我们的算法对$O( n%2) 操作中每种选择的外部阻力都是最佳的, 条件是, 拖力器的数量很小。 因此, 以后的优化比解决Lyapunov 方形方体的标准方法要快得多, 因此每步都需要 $O( n3) 3美元。 我们的算法以复合O( nQ) AS- salimal- developlevelopmental missional missulational- developmental $2 commaxyal basilxyal- divormexmexmexmusmexmexmexmusmusal