Representation learning enables us to automatically extract generic feature representations from a dataset to solve another machine learning task. Recently, extracted feature representations by a representation learning algorithm and a simple predictor have exhibited state-of-the-art performance on several machine learning tasks. Despite its remarkable progress, there exist various ways to evaluate representation learning algorithms depending on the application because of the flexibility of representation learning. To understand the current representation learning, we review evaluation methods of representation learning algorithms and theoretical analyses. On the basis of our evaluation survey, we also discuss the future direction of representation learning. Note that this survey is the extended version of Nozawa and Sato (2022).
翻译:代表性学习使我们能够从数据集中自动提取通用特征说明,以解决另一个机器学习任务。最近,通过代表学习算法和简单预测器提取的特征说明在一些机器学习任务上表现出了最先进的表现。尽管取得了显著的进展,但是由于代表性学习的灵活性,根据应用情况,存在着评价代表性学习算法的各种方法。为了了解目前的代表性学习,我们审查了代表性学习算法和理论分析的评价方法。我们还根据我们的评价调查,讨论了代表性学习的未来方向。请注意,这一调查是Nozawa和Sato的扩展版(2022年)。