项目名称: 泛函微分方程的多重概周期解和相关的分支问题

项目编号: No.10901140

项目类型: 青年科学基金项目

立项/批准年度: 2010

项目学科: 金属学与金属工艺

项目作者: 夏永辉

作者单位: 浙江师范大学

项目金额: 16万元

中文摘要: 本项目主要研究: (1)非自治泛函微分方程的概周期解,特别是多个概周期解的存在性(目前关于多个概周期解的存在性问题还没有较好的结果)。 (2)自治泛函微分方程的稳定性和分支理论及应用,包括临界情况(临界情况的研究相对比较复杂)。 (3)用非线性泛函分析的方法研究非自治泛函微分方程的周期解、概周期解存在性与唯一性问题。

中文关键词: 周期解;概周期解;分支;不动点;

英文摘要:

英文关键词: periodic solution;almost periodic solution;bifurcation;fixed point;

成为VIP会员查看完整内容
0

相关内容

专知会员服务
35+阅读 · 2021年7月17日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
94+阅读 · 2021年7月3日
专知会员服务
45+阅读 · 2021年5月24日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
109+阅读 · 2020年12月18日
专知会员服务
74+阅读 · 2020年12月7日
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
62+阅读 · 2020年11月14日
《常微分方程》笔记,419页pdf
专知会员服务
73+阅读 · 2020年8月2日
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
梯度下降(Gradient Descent)的收敛性分析
PaperWeekly
2+阅读 · 2022年3月10日
求解稀疏优化问题——半光滑牛顿方法
极市平台
48+阅读 · 2019年11月30日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
41+阅读 · 2019年8月9日
图解高等数学|线性代数
遇见数学
39+阅读 · 2017年10月18日
【基础数学】- 01
遇见数学
20+阅读 · 2017年7月25日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
小贴士
相关主题
相关VIP内容
专知会员服务
35+阅读 · 2021年7月17日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
94+阅读 · 2021年7月3日
专知会员服务
45+阅读 · 2021年5月24日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
109+阅读 · 2020年12月18日
专知会员服务
74+阅读 · 2020年12月7日
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
62+阅读 · 2020年11月14日
《常微分方程》笔记,419页pdf
专知会员服务
73+阅读 · 2020年8月2日
相关资讯
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
梯度下降(Gradient Descent)的收敛性分析
PaperWeekly
2+阅读 · 2022年3月10日
求解稀疏优化问题——半光滑牛顿方法
极市平台
48+阅读 · 2019年11月30日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
41+阅读 · 2019年8月9日
图解高等数学|线性代数
遇见数学
39+阅读 · 2017年10月18日
【基础数学】- 01
遇见数学
20+阅读 · 2017年7月25日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员