项目名称: 带有噪声扰动的动力系统分支问题研究
项目编号: No.11501364
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 数理科学和化学
项目作者: 马纪英
作者单位: 上海理工大学
项目金额: 18万元
中文摘要: 本项目主要研究噪声扰动下动力系统的分支问题。首先,我们将分别研究实噪声和白噪声扰动下的一般 Hopf 分支问题。对实噪声扰动系统,可以通过构造 Lyapunov 函数等方法研究其随机吸引子的变化情况。而对白噪声扰动系统,一方面可以利用其 Fokker-Planck 方程的解讨论系统的 P-分支,另一方面可以通过研究其线性化方程 和 Lyapunov 指数等分析系统的 D-分支。其次,我们将研究实噪声扰动下离散动力系统的单参数分支问题,分别考虑折分支、倍周期分支和 Neimark-Sacker 分支的正规型的噪声扰动,重点分析系统的随机不动点以及不变测度的存在性及其变化。最后,在很多物理系统中,随机扰动往往是有界的,故我们将研究有界噪声扰动下平面微分系统的非双曲周期轨的分支问题。我们重点讨论当系统参数变化时,其极小正向不变集的个数变化及其关于 Hausdorff 度量的不连续变化。
中文关键词: 动力系统;噪声;不变测度;Hopf分支;随机分支
英文摘要: The phenomenon of bifurcation exists widely in mathematical models, and noise perturbation is ubiquitous in these actual models, hence the present program is dedicated to the study of bifurcation theory of dynamical system with noise perturbation. Firstly, we will investigate the Hopf bifurcation under real and white noise, respectively. With real noise, we study the random attractors by constructing Lyapunov functions. While under white noise perturbation, P-bifurcation is analyzed through Fokker-Planck equation, and D-bifurcation is analyzed through linearized equations and Lyapunov exponents. Next, we will study the single parameter bifurcation of discrete dynamical systems with real noise perturbation, including fold bifurcation, period-doubling bifurcation, and Neimark-Sacker bifurcation. The attention is payed to the variation of random fixed points and invariant measures. Finally, we will study the bifurcation of nonhyperbolic periodic orbit in planar differential system with bounded noise. Under such noise perturbations, we will try to prove that the number of MFI sets of the perturbed system changes and the hard bifurcation occurs. Some examples are provided to illustrate the theoretical results.
英文关键词: dynamical system;noise;invariant measure;Hopf bifurcation;stochastic bifurcation