The classical coding theorem in Kolmogorov complexity states that if an $n$-bit string $x$ is sampled with probability $\delta$ by an algorithm with prefix-free domain then K$(x) \leq \log(1/\delta) + O(1)$. In a recent work, Lu and Oliveira [LO21] established an unconditional time-bounded version of this result, by showing that if $x$ can be efficiently sampled with probability $\delta$ then rKt$(x) = O(\log(1/\delta)) + O(\log n)$, where rKt denotes the randomized analogue of Levin's Kt complexity. Unfortunately, this result is often insufficient when transferring applications of the classical coding theorem to the time-bounded setting, as it achieves a $O(\log(1/\delta))$ bound instead of the information-theoretic optimal $\log(1/\delta)$. We show a coding theorem for rKt with a factor of $2$. As in previous work, our coding theorem is efficient in the sense that it provides a polynomial-time probabilistic algorithm that, when given $x$, the code of the sampler, and $\delta$, it outputs, with probability $\ge 0.99$, a probabilistic representation of $x$ that certifies this rKt complexity bound. Assuming the security of cryptographic pseudorandom generators, we show that no efficient coding theorem can achieve a bound of the form rKt$(x) \leq (2 - o(1)) \cdot \log(1/\delta) +$ poly$(\log n)$. Under a weaker assumption, we exhibit a gap between efficient coding theorems and existential coding theorems with near-optimal parameters. We consider pK$^t$ complexity [GKLO22], a variant of rKt where the randomness is public and the time bound is fixed. We observe the existence of an optimal coding theorem for pK$^t$, and employ this result to establish an unconditional version of a theorem of Antunes and Fortnow [AF09] which characterizes the worst-case running times of languages that are in average polynomial-time over all P-samplable distributions.
翻译:Kolmogorov 复杂性的古典编码理论指出,如果一个美元-比特(美元)的精度(美元-比特)的精度(美元-比特)(美元)=O(log(1/delta))+美元(O(1)美元)。如果一个使用无前缀域的算法对一个美元(x)\leq plog(1/\delta)+O(1)美元(美元)进行抽样,那么,在最近的一项工作中,Lu和Oliveira[Lo21]建立了无条件的这个结果有时间限制的版本,通过显示美元(美元)的精度(美元)的精度抽样(美元),然后 rKt(美元) =O(log(1/delta) =美元(美元) +O(美元)=美元(美元) =(美元) +(log n) 美元(美元), rKt 表示利文(lein) 的随机模拟模型(2) 和美元(美元(美元)的元) 的元(我们的精度(O) 的精度(美元) 的精度(我们的精度) 的精度(O) 的精度(美元) 的精度(O) 的精度(美元) 显示的精度(美元) 的精度(我们的精度) 的精度(美元) 的精度(美元) 的精度) 的精度(的精度) 的精度(我们的精度(美元) 的精度) 的精度(O) 的精度(的精度(的精度) 的精度) 的精度(的精度) 的精度) 的精度) 的精度(美元) 的精度(美元) 的精度(美元) 的精度(美元) 的精度(美元) 的精度(的精度) 的精度(我们的精度) 的精度(的精度) 的精度(的精度) ) 的精度(的精度) ) 的精度(的精度) 的精度(的精度) 的精度(O) 的精度(的精度