Given a set $P$ of $n$ points in the plane, the $k$-center problem is to find $k$ congruent disks of minimum possible radius such that their union covers all the points in $P$. The $2$-center problem is a special case of the $k$-center problem that has been extensively studied in the recent past \cite{CAHN,HT,SH}. In this paper, we consider a generalized version of the $2$-center problem called \textit{proximity connected} $2$-center (PCTC) problem. In this problem, we are also given a parameter $\delta\geq 0$ and we have the additional constraint that the distance between the centers of the disks should be at most $\delta$. Note that when $\delta=0$, the PCTC problem is reduced to the $1$-center(minimum enclosing disk) problem and when $\delta$ tends to infinity, it is reduced to the $2$-center problem. The PCTC problem first appeared in the context of wireless networks in 1992 \cite{ACN0}, but obtaining a nontrivial deterministic algorithm for the problem remained open. In this paper, we resolve this open problem by providing a deterministic $O(n^2\log n)$ time algorithm for the problem.
翻译:鉴于飞机上设定的美元点数, 美元中心的问题是找到最低半径(PCT)的相容盘盘盘数, 以便它们的联盟覆盖所有点数($P美元)。 美元中心问题是最近对美元中心问题的特例。 注意当$delta=0美元时, PCT问题被减为$( 最小含磁盘) 问题, 当 $( delta) 问题趋于确定时, 它被减为$( $) 中心( PCTC ) 问题 。 在这个问题中, 我们还被给了一个参数 $\ delta\ ge $ 0 美元。 我们还有一个限制, 磁盘中心之间的距离应该最多为$delta$。 注意当$( delta) =0, 当 PCTC 问题被减为$( 最小含磁盘) 问题时, 当 $( deltta) 问题通常为 $( $- centror ) 问题时, 它被减为$($ CN) 中心点 问题 问题 。