In this paper, we propose a PAC-Bayesian \textit{a posteriori} parameter selection scheme for adaptive regularized regression in Hilbert scales under general, unknown source conditions. We demonstrate that our approach is adaptive to misspecification, and achieves the optimal learning rate under subgaussian noise. Unlike existing parameter selection schemes, the computational complexity of our approach is independent of sample size. We derive minimax adaptive rates for a new, broad class of Tikhonov-regularized learning problems under general, misspecified source conditions, that notably do not require any conventional a priori assumptions on kernel eigendecay. Using the theory of interpolation, we demonstrate that the spectrum of the Mercer operator can be inferred in the presence of "tight" $L^{\infty}$ embeddings of suitable Hilbert scales. Finally, we prove, that under a $\Delta_2$ condition on the smoothness index functions, our PAC-Bayesian scheme can indeed achieve minimax rates. We discuss applications of our approach to statistical inverse problems and oracle-efficient contextual bandit algorithms.


翻译:在本文中,我们提出了一个PAC-Bayesian \ textit{ a posiori}参数选择方案,用于在一般、未知的来源条件下调整Hilbert级的正常回归。我们证明我们的方法适应了偏差,并在亚银噪音下实现了最佳学习率。与现有的参数选择方案不同,我们方法的计算复杂性不取决于抽样规模。我们为新的、广泛的Tikhonov-正规学习问题在一般、错误的源条件下得出迷你最大适应率,特别是不需要在内核egendecay上有任何常规的先验假设。我们利用内推理论,表明在“近” $L ⁇ infty} 嵌入适当的Hilbert 比例表时,可以推断Mercer经营者的频谱。最后,我们证明,在光滑指数函数上一个$\Delta_2美元的条件下,我们的PAC-Bayesian 计划确实可以达到迷你轴率。我们讨论我们如何应用统计反向问题和高压断节背景背景的语段算算法。

1
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月3日
Arxiv
23+阅读 · 2022年2月24日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员