Ball 3D localization in team sports has various applications including automatic offside detection in soccer, or shot release localization in basketball. Today, this task is either resolved by using expensive multi-views setups, or by restricting the analysis to ballistic trajectories. In this work, we propose to address the task on a single image from a calibrated monocular camera by estimating ball diameter in pixels and use the knowledge of real ball diameter in meters. This approach is suitable for any game situation where the ball is (even partly) visible. To achieve this, we use a small neural network trained on image patches around candidates generated by a conventional ball detector. Besides predicting ball diameter, our network outputs the confidence of having a ball in the image patch. Validations on 3 basketball datasets reveals that our model gives remarkable predictions on ball 3D localization. In addition, through its confidence output, our model improves the detection rate by filtering the candidates produced by the detector. The contributions of this work are (i) the first model to address 3D ball localization on a single image, (ii) an effective method for ball 3D annotation from single calibrated images, (iii) a high quality 3D ball evaluation dataset annotated from a single viewpoint. In addition, the code to reproduce this research is be made freely available at https://github.com/gabriel-vanzandycke/deepsport.
翻译:团队体育中的球 3D 本地化有多种应用,包括足球自动场外检测,或球场上射击释放本地化。 今天, 这项任务要么通过使用昂贵的多视图设置解决, 要么将分析限制在弹道轨迹上。 在这项工作中, 我们提议用像素估计球直径,并使用米中真实球直径的知识, 在一个校准的单色相机上处理任务。 这个方法适合球可见( 甚至部分) 的任何游戏情况。 为了实现这一点, 我们使用一个小型神经网络, 训练用传统球探测器产生的候选人周围的图像补丁。 除了预测球直径外, 我们的网络输出着在图像补接中有一个球的自信。 3篮球数据集的校验显示, 我们的模型在3D 本地化上给出了显著的预测。 此外, 我们的模型通过过滤探测器生成的候选人来提高探测速度。 这项工作的贡献是 (i) 第一个模型, 用来在单个图像上处理3D 3D 的图像上, 一个有效的方法, 一个来自 3D 高质量 的 标准 。