The information of spiking neural networks (SNNs) are propagated between the adjacent biological neuron by spikes, which provides a computing paradigm with the promise of simulating the human brain. Recent studies have found that the time delay of neurons plays an important role in the learning process. Therefore, configuring the precise timing of the spike is a promising direction for understanding and improving the transmission process of temporal information in SNNs. However, most of the existing learning methods for spiking neurons are focusing on the adjustment of synaptic weight, while very few research has been working on axonal delay. In this paper, we verify the effectiveness of integrating time delay into supervised learning and propose a module that modulates the axonal delay through short-term memory. To this end, a rectified axonal delay (RAD) module is integrated with the spiking model to align the spike timing and thus improve the characterization learning ability of temporal features. Experiments on three neuromorphic benchmark datasets : NMNIST, DVS Gesture and N-TIDIGITS18 show that the proposed method achieves the state-of-the-art performance while using the fewest parameters.
翻译:Spinking神经网络(SNNS)的信息在相邻的生物神经神经网(Spinking神经网络)之间通过钉钉来传播,这提供了一种计算机模式,并有望模拟人类大脑。最近的研究发现,神经神经延缓的时间在学习过程中起着重要作用。因此,配置刺痛的确切时间是理解和改进SNNS时间信息传输过程的一个很有希望的方向。然而,目前对神经神经穿刺的现有学习方法大多侧重于调整突触重量,而研究在炭疽延缓方面却很少。在本文件中,我们核查将延迟时间纳入受监督学习的效果,并提出一个模块,通过短期记忆调节轴延缓。为此,将修正的轴延缓(RAD)模块与悬浮模型结合起来,以调整峰痛时间的时间安排,从而提高时间特征的定性学习能力。对三种神经形态基准数据集的实验:NMNIST、DVS-GESture和N-TIGITIGIT18。我们核查了将时间延迟纳入监督学习的有效性,并提出一个模块,通过短期记忆来调整轴运行状态。