Transferring Knowledge across Learning Processes

2019 年 5 月 18 日 CreateAMind



Transferring Knowledge across Learning Processes

Sebastian Flennerhag, Pablo G. Moreno, Neil D. Lawrence, Andreas Damianou

(Submitted on 3 Dec 2018 (v1), last revised 22 Mar 2019 (this version, v3))

In complex transfer learning scenarios new tasks might not be tightly linked to previous tasks. Approaches that transfer information contained only in the final parameters of a source model will therefore struggle. Instead, transfer learning at a higher level of abstraction is needed. We propose Leap, a framework that achieves this by transferring knowledge across learning processes. We associate each task with a manifold on which the training process travels from initialization to final parameters and construct a meta-learning objective that minimizes the expected length of this path. Our framework leverages only information obtained during training and can be computed on the fly at negligible cost. We demonstrate that our framework outperforms competing methods, both in meta-learning and transfer learning, on a set of computer vision tasks. Finally, we demonstrate that Leap can transfer knowledge across learning processes in demanding reinforcement learning environments (Atari) that involve millions of gradient steps.


1 INTRODUCTION 

Transfer learning is the process of transferring knowledge encoded in one model trained on one set of tasks to another model that is applied to a new task. Since a trained model encodes information in its learned parameters, transfer learning typically transfers knowledge by encouraging the target model’s parameters to resemble those of a previous (set of) model(s) (Pan & Yang, 2009). This approach limits transfer learning to settings where good parameters for a new task can be found in the neighborhood of parameters that were learned from a previous task. For this to be a viable assumption, the two tasks must have a high degree of structural affinity, such as when a new task can be learned by extracting features from a pretrained model (Girshick et al., 2014; He et al., 2017; Mahajan et al., 2018). If not, this approach has been observed to limit knowledge transfer since the training process on one task will discard information that was irrelevant for the task at hand, but that would be relevant for another task (Higgins et al., 2017; Achille et al., 2018).


We argue that such information can be harnessed, even when the downstream task is unknown, by transferring knowledge of the learning process itself. In particular, we propose a meta-learning framework for aggregating information across task geometries as they are observed during training. These geometries, formalized as the loss surface, encode all information seen during training and thus avoid catastrophic information loss. Moreover, by transferring knowledge across learning processes, information from previous tasks is distilled to explicitly facilitate the learning of new tasks.


 For more demanding tasks, meta-learning in this manner is challenging; backpropagating through thousands of gradient steps is both impractical and susceptible to instability. On the other hand, truncating backpropagation to a few initial steps induces a short-horizon bias (Wu et al., 2018). We argue that as the training process grows longer in terms of the distance traversed on the loss landscape, the geometry of this landscape grows increasingly important. When adapting to a new task through a single or a handful of gradient steps, the geometry can largely be ignored. In contrast, with more gradient steps, it is the dominant feature of the training process.


To scale meta-learning beyond few-shot learning, we propose Leap, a light-weight framework for meta-learning over task manifolds that does not need any forward- or backward-passes beyond those already performed by the underlying training process. We demonstrate empirically that Leap is a superior method to similar meta and transfer learning methods when learning a task requires more than a handful of training steps. Finally, we evaluate Leap in a reinforcement Learning environment (Atari 2600; Bellemare et al., 2013), demonstrating that it can transfer knowledge across learning processes that require millions of gradient steps to converge.


2 TRANSFERRING KNOWLEDGE ACROSS LEARNING PROCESSES We start in section 2.1 by introducing the gradient descent algorithm from a geometric perspective. Section 2.2 builds a framework for transfer learning and explains how we can leverage geometrical quantities to transfer knowledge across learning processes by guiding gradient descent. We focus on the point of initialization for simplicity, but our framework can readily be extended. Section 2.3 presents Leap, our lightweight algorithm for transfer learning across learning processes.


2.1 GRADIENT PATHS ON TASK MANIFOLDS Central to our framework is the notion of a learning process; the harder a task is to learn, the harder it is for the learning process to navigate on the loss surface (fig. 1). Our framework is based on the idea that transfer learning can be achieved by leveraging information contained in similar learning processes. Exploiting that this information is encoded in the geometry of the loss surface, we leverage geometrical quantities to facilitate the learning process with respect to new tasks. We focus on the supervised learning setting for simplicity, though our framework applies more generally. Given a learning objective f that consumes an input x ∈ R m and a target y ∈ R c and maps a parameterization θ ∈ R n to a scalar loss value, we have the gradient descent update as


https://arxiv.org/pdf/1812.01054.pdf



登录查看更多
27

相关内容

迁移学习(Transfer Learning)是一种机器学习方法,是把一个领域(即源领域)的知识,迁移到另外一个领域(即目标领域),使得目标领域能够取得更好的学习效果。迁移学习(TL)是机器学习(ML)中的一个研究问题,着重于存储在解决一个问题时获得的知识并将其应用于另一个但相关的问题。例如,在学习识别汽车时获得的知识可以在尝试识别卡车时应用。尽管这两个领域之间的正式联系是有限的,但这一领域的研究与心理学文献关于学习转移的悠久历史有关。从实践的角度来看,为学习新任务而重用或转移先前学习的任务中的信息可能会显着提高强化学习代理的样本效率。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
元学习(meta learning) 最新进展综述论文
专知会员服务
278+阅读 · 2020年5月8日
因果关联学习,Causal Relational Learning
专知会员服务
182+阅读 · 2020年4月21日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
专知会员服务
115+阅读 · 2019年12月24日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Transfer Adaptation Learning: A Decade Survey
Arxiv
37+阅读 · 2019年3月12日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关VIP内容
元学习(meta learning) 最新进展综述论文
专知会员服务
278+阅读 · 2020年5月8日
因果关联学习,Causal Relational Learning
专知会员服务
182+阅读 · 2020年4月21日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
专知会员服务
115+阅读 · 2019年12月24日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员