【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6

2021 年 11 月 12 日 中国图象图形学学会CSIG

The 11th International Conference on Image and Graphics (ICIG) will be held in Haikou, China, on 26 – 28, November, 2021. We sincerely invite the researches over the world in this area to join us.


ICIG 2021 Symposium:
The First Science and Technology Award Laureate Forum of CSIG


Intro



There are a lot of challenging problems in the field of image and graphics that researchers are keep trying to solve. In this forum, winners of 2020 Science and Technology Award of China Society of Image and Graphics are invited to present their award-winning projects. These projects are outstanding representatives of research achievements in the field of image and graphics in China. The forum provides a precious chance to understand these breakthroughs in key theories and technologies in the field of image and graphics, including object cognition and learning in complex environment, target re-identification across time and space, visual media understanding via local correlation analysis, cross-domain face image reconstruction and credible identity authentication, robust image analysis via data quality assessment, multi light source fusion model for 3D print et. al. The speakers will share their experiences and insights in achieving these research results, as well as their latest progress.



Organizer



Yuxin Peng (Peking University)

Jiansheng Chen (University of Science andTechnology Beijing)



Invited speakers



WeiShi Zheng

Title: From Person Re-identification to Behaviour Analysis

Abstract: The person re-identification is known to track persons across non-overlapping camera views and various methods have been developed recently. While behavious analysis is to understand a person’s activity, it seems that there is rare connection between these two tasks. This talk will try to show why person re-identification is useful for behavious analysis along with presenting our recent research on these two tasks.

Biography: Wei-Shi Zheng is now a full Professor with Sun Yat-sen University. Dr. Zheng received his Ph.D. degree in Applied Mathematics from Sun Yat-sen University in 2008. His research interests include person/object association and activity understanding in visual surveillance, and the related large scale machine learning algorithm. He has ever joined Microsoft Research Asia Young Faculty Visiting Programme. He has ever served as area chairs of CVPR, ICCV, BMVC and IJCAI. He is an IEEE MSA TC member. He is an associate editor of the Pattern Recognition Journal. He is a recipient of the Excellent Young Scientists Fund of the National Natural Science Foundation of China, and a recipient of the Royal Society- Newton Advanced Fellowship of the United Kingdom.

Huimin Ma

Title: Object Cognition and Learning in complex environment

Abstract: Computer vision is closely related to brain science and cognitive science, but there is an insurmountable gap between human visual perception mode and computational visual computing methods, especially on key issues such as quantitative representation of human vision, computing architecture of cognitive learning. This report introduces our researches on complex environment understanding, three-dimensional target detection and driving behavior prediction with prototype memory and Gestalt cognition inspired by brain and cognition. Focusing on intelligent driving tasks, the report introduces three aspects: (1) Weakly-supervised and few-shot learning based semantic segmentation; (2) Thinking in 3D driving scene 3D target detection; (3) Predictive Bi LSTM CRF cognitive prediction of driving behavior.

Biography: Professor Huimin Ma is the dean of the Department of Internet of Things and Electronic Engineering at University of Science and Technology Beijing. She was the director of 3D Image Lab in the Department of Electronic Engineering of Tsinghua University and the vice president of the Institute of artificial intelligence at University of science and technology Beijing. She is now the vice president and Secretary General of China Society of Image Graphics. She engaged in the cross research of computer vision and cognitive psychology, and explored the key technologies of visual perception, cognition and decision-making of unmanned systems in complex environment. She has been in charge of more than 30 projects such as National Key Basic Research Program of China, National Special Projects and National Natural Science Foundation in the field of Cognitive learning, modeling and simulation in complex scenes. Her researches on the human cognition model and object detection method in complex environment won the first place in the evaluation of the largest automatic driving data set KITTI, the first prize of Wu Wen-jun artificial intelligence science and technology innovation, first prize of technical invention of China Society of image graphic, the second prize of the technological invention award of the Ministry of education. As the corresponding author, she has published more than 100 papers including TPAMI, TIP, TITS, PR, CVPR, NIPS, ICCV, etc. Email: mhmpub@ustb.edu.cn,  Web homepage: http://3dimagelab.cn

Xinhang Song

Title: Local Correlated Analysis and Representation of Visual Media

Abstract: Human beings have the inherent ability of local correlation and global aggregation. Visual media such as images/videos have the characteristics of rich content with complex contexts. Usually, local regions are the basic components of images, which contain rich information and various types of relationships. How to model the relationships between local regions and establish the multi-dimensional fusion from local to global is a cutting-edge problem in visual media analysis. In this work, we investigate the local correlation and global aggregation in the following aspects, including the contextual modeling between semantic representations of local regions, and multi-scale aggregation from local to global, which can alleviate the weak correlation problem for visual media analysis. In addition, we also investigate the local correlation research in more challenging tasks, i.e., dynamic visual media analysis on Embodied AI. In particular, multi-scale spatial and contextual modeling framework is proposed for visual navigation task, which can improve both the successful rate and efficiency.

Biography: Xinhang Song, received Ph.D. from the Institute of computing technology (ICT), Chinese Academy of Sciences (CAS) in 2017. He is now an associate professor and master supervisor in ICT, CAS. The main research fields include scene recognition, segmentation, object detection and visual navigation. He has published more than 20 papers on ACM\IEEE Trans. or CCF-A conferences, such as CVPR, ICCV, NeurIPS, AAAI, IJCAI, ACM Multimedia, TIP. He won the first place of visual navigation competition in CVPR 2021 Embedded AI, the first place of ACM MM2016 Yahoo-Flickr Grand Challenge on Tag and Caption Prediction, and the first place of ImageCLEF 2013 Robot Vision competition. He won the Special Prize of the President Scholarship of the Chinese Academy of Sciences, the Outstanding Doctoral Dissertation Award of the Chinese Society of Image and Graphics (CSIG), and was supported by " National Postdoctoral Program for Innovative Talents ".

Nannan Wang

Title: Cross-domain Image Reconstruction and Credible Identity Authentication

Abstract: As an important task for “Safe City” construction, city-level video surveillance has evolved from the first generation of "visible" and the second generation of "readable" to the third stage of "intelligible". Due to the wide spatial distribution of city level cameras and large differences in their types and parameters, it is a major challenge to realize the "intelligible" city level video surveillance system. This lecture mainly introduces the recent progress on cross-domain image reconstruction and credible identity authentication technology, including (1) Behavior analysis (abnormal behavior detection, behavior location and recognition): complete semantic information extraction through multi-scale boundary sensitive network for temporal action localization; the differentiation of reconstruction quality of normal and abnormal data through the detection of temporal-spatial fusion features; (2) Cross-modality person re-identification: improving the feature modality invariance by measuring and constraining the modality differences between cross-modality person high-dimensional features; (3) Video object clarity (underlying vision): Improving the representation ability of inter-frame temporal dependence by joint priori information and motion invariance; (4) Cross-domain image synthesis (heterogeneous image generation and image stylization): Transforming the images from different modalities into unified modality to achieve information completion. (5) Cross-domain image recognition (heterogeneous face image recognition): Improving the interpretability and accuracy of cross-domain image synthesis and recognition through representation disentanglement learning. This research can provide a systematic solution for the intelligent analysis of network video streaming; (6) Credible identity authentication: here “credible” mainly refers to reliability and security. The algorithm is supposed to not only defend against external attacks (adversarial learning), but also protect private information.

Biography: Nannan Wang, Huashan Scholar distinguished professor and doctoral supervisor at Xidian University, is currently the director of Intelligent information processing center in State Key Laboratory of Integrated Services Networks. In recent years, he has been engaged in the research of computer vision and statistical machine learning. His research mainly involves cross-domain image reconstruction and credible identity authentication, including sketch-photo synthesis and recognition, image/video super-resolution reconstruction, image restoration, behavior analysis and recognition, person re-identification, etc. He has published over 150 papers in top international journals and conferences such as IEEE TPAMI, IJCV, CVPR, ICCV, ECCV, NeurIPS, ICML, etc. He has received Outstanding Youth Foundation from National Natural Science Foundation of China. He has been selected as Young Elite Scientists Sponsorship Program by China Association of Science and Technology (CAST). He has been awarded the first prize for Ministry of Education Natural Science Award, the first prize for Shaanxi Province Science and Technology Award, the second prize of China Society of Image and Graphics (CSIG) Natural Science Award. He is the recipient of the Chinese Association for Artificial Intelligence (CAAI) Outstanding Doctorate Dissertations Award and Shaanxi Province Outstanding Doctorate Dissertations Award.

QingboWu

Title: From Perceptual Quality to Cognitive Quality - Robust Image Analysis via DataQuality Assessment

Abstract: Data quality plays a critical role for robust image analysis. Unfortunately, due to various unforeseen noise and inevitable human error, our intelligent vision systems always suffer great challenge from poor data quality. On the one hand, the image data captured from the sensors may suffer different kinds of distortions, which causes domain shift and degrades the performance of image analysis model trained with pristine images. On the other hand, the manually annotated label data may also suffer incorrect labels, which misleads the supervised learning process. In this talk, I will introduce our recent efforts in conducting robust image analysis via data quality assessment. First, we present a relevance-aware incremental learning model to adapt to increasingly diverse image quality assessment tasks, which warns the intelligent vision system under image data distortion. Second, we introduce a graph reasoning based image quality enhancement method to alleviate the domain shift between the distorted image and the pristine image. Finally, we discuss a task-specific switchable loss for learning robust instance segmentation model from noisy label data.

Biography: Qingbo Wu is an Associate Professor at the School of Information and Communication Engineering, University of Electronic Science and Technology of China (UESTC). He received the Ph.D. degree in Signal and Information Processing from UESTC in 2015. Before joining the UESTC, he was a research assistant in the Chinese University of Hong Kong, and visiting scholar in the University of Waterloo. He was selected to the “Spark Program of Fundamental Research”, and “Young Scholar of Distinction” of UESTC in 2018. His research interests include the image quality assessment theory, image enhancement and restoration model, perception-driven deep neural network, etc. He has authored more than 100 scientific publications, including various IEEE Transactions and journals, and conference papers of CVPR, ICCV, ECCV, ACM MM and so on. He received the Top 10% paper awards at the IEEE ICIP 2015 and VCIP 2016.

Lifang Wu

Title: Preliminary Exploration on Intelligent 3D Printing

Abstract: The core idea of intelligent manufacturing is to use the new generation of information processing technology to lead the reform and industrial upgrading in the manufacturing field. As an interdisciplinary subject of information, materials and machinery, 3D printing is a natural intelligent manufacturing practice platform.how to organically integrate intelligent information processing technology into 3D printing technology and solve the challenging problems is a problem that needs in-depth thinking. This report will take our work obtained the second prize of technical invention of CSIG - large-size DLP surface exposure 3D printing technology, as examples to introduce our exploration in Intelligent Manufacturing.

Biography: Lifang Wu, professor and doctoral supervisor with Beijing University of technology. She received Bachelor Degree, master Degree and doctoral degrees from Beijing University of technology in 1991, 1994, and 2003 respectively. She was a visiting scholar at the University of Birmingham from September to December 2005 and a visiting scholar at the University of New York at buffalo from October 2009 to May 2010. Her main research interests include image and video content analysis, intelligent 3D printing, face liveness detection etc. In recent years, she has undertaken more than 20 projects, and published more than 100 papers in PR, IEEE TCSVT, Neurocomputing, PRL, etc., and obtained more than 40 authorized patents. She won the third prize of Beijing Science and technology progress award, the third prize of electronic information technology of CIE, the second prize of sports science and technology award of China sports society, and the second prize of technical invention of CSIG. In 2020, She won the title of excellent scientific and technological worker of CIE, and intelligent 3D printing technology won the Best University Exhibition Award of the NCIG 20. She is now one of directors of CSIG, Executive director of BSIG, Outstanding member of China Computer Society (CCF), standing member and Deputy Secretary General of CCF computer vision committee, and standing member of CSIG big vision data committee. Editorial board member of signal processing, information volume of Chinese scientific papers, Chinese Journal of image and graphics, member of icme2017, icpr2018 and other international conference procedure committees, and participated in organizing cccv2017, prcv2019, ncig2020, chinamm2020, prcv2021, etc.



Conference Website



http://icig2021.csig.org.cn/

To visit  the conference website, please scan the following QR code:



Online Payment



http://conf.csig.org.cn/fair/394

To register on the microsite, please scan the following QR code:





中国图象图形学学会关于组织开展科技成果鉴定的通知

CSIG图像图形中国行承办方征集中

登录查看更多
2

相关内容

Cognition:Cognition:International Journal of Cognitive Science Explanation:认知:国际认知科学杂志。 Publisher:Elsevier。 SIT: http://www.journals.elsevier.com/cognition/
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
49+阅读 · 2021年9月11日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员