【ICIG2021】Latest News & Announcements of the Tutorial

2021 年 12 月 20 日 中国图象图形学学会CSIG

The 11th International Conference on Image and Graphics (ICIG) will be held in Haikou, China, on 26 – 28, December, 2021. We sincerely invite the researches over the world in this area to join us.


Xi Li

Title: Attention and Transformers for Vision
Abstract: The era of the Internet and the Internet of Things gives rise to big data of images or videos. It is in urgent need of artificial intelligence technologies and methods in order to effectively extract knowledge from these massive vision data. Therefore, in the epoch of knowledge economy, how to perform artificial intelligence-driven visual computing has become a core technical problem that needs to be solved foremost. This lecture mainly focuses on data-driven visual feature learning based on attention and transformers from large-scale image/video data. It analyzes and introduces the main research problems and technical methods involved in large-scale visual feature learning in terms of target visual perception characteristics, visual feature representation, deep learner construction mechanism, high-level semantic understanding. Also, it systematically reviews the development of visual feature representation and learning, and introduces a series of representative works and practical applications in recent years using visual feature learning for visual semantic analysis and understanding. At the end of the lecture,some open problems and difficulties in the learning of visual features will be discussed.

Biography: Prof. Xi Li,IET Fellow,IEEE Senior Member,was the winner of Zhejiang Provincial Science Foundation for Outstanding Young Scholars, and was appointed as a distinguished expert of the Zhejiang Province government. Also, he served as a council member of the China Image and Graphics Society. Meanwhile, he had a wealth of academic experience in serving as program committee members of top conferences (e.g., NIPS, ICML, CVPR, ICCV) or reviewers of premier journals (e.g., IEEE TPAMI, IJCV, IEEE TIP). Besides, he made several invited talks at many well-known conferences at home and abroad (i.e., RACV 2016, ICSW 2017, ICDS 2017, IEEE FMT 2018). His research interests mainly focus on the AI fields of computer vision and machine learning, and has published approximately 150 top conferences and leading journal papers with about 4600 Google Scholar citations. He devoted his efforts to enabling many academic roles in conference organization (e.g., PRCV 2019 AC, ICPR 2018 AC, IJCAI 2019 SPC, and ICCV 2019 AC, CVPR 2020 AC, ICPR 2020 AC) and journal editorial management (e.g., AEs of IEEE TNNLS, IEEE TCSVT, Neurocomputing, and Neural Processing Letters). He won two Best International Conference Paper Awards (including ACCV 2010 and DICTA 2012), an ICIP 2015 Top 10% Conference Paper Award, and an ACML 2017 Best Student Paper Award. In addition, he won two China Natural Science and Technology Awards (including first-class and second-class prizes) and a Chinese Patent Excellence Award.

Wenrui Dai

Title: Convolutional Neural Networks for Signals on Graphs
Abstract: Signals of interest are supported on a graph structure in many real-world applications, including sensor networks, social networks, transportation systems, gene regulatory networks, and 3-D point clouds. It is of great importance to extend standard signal processing tools for representing signals on graphs. With the development of deep learning techniques, graph neural networks (GNNs) generalize the deep convolutional neural networks to signals on graphs and pave a new way for learning node-level and graph-level representations. In this talk, I will present the development and current trends of convolutional neural networks for signals on graphs. I will begin with the fundamental of graph signal processing and then elaborate the graph convolution and pooling operations developed in the spatial and spectral domains. Finally, I will introduce our recent works on multi-scale representation of signals on graphs via graph convolutional neural networks.

Biography: Wenrui Dai received B.S., M.S., and Ph.D. degree in Electronic Engineering from Shanghai Jiao Tong University, Shanghai, China in 2005, 2008, and 2014. He is currently an associate professor at the Department of Computer Science and Engineering, Shanghai Jiao Tong University (SJTU). Before joining SJTU, he was with the faculty of the University of Texas Health Science Center at Houston from 2018 to 2019. He was a postdoctoral scholar with the Department of Biomedical Informatics, University of California, San Diego from 2015 to 2018 and a postdoctoral scholar with the Department of Computer Science and Engineering, SJTU from 2014 to 2015. His research interests include image/signal processing, learning-based image/video coding and predictive modeling. He has published 60 papers in prestigious journals like IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE Transactions on Image Processing, IEEE Transactions on Signal Processing and conferences like ICML and CVPR.



Conference Website



http://icig2021.csig.org.cn/

To visit  the conference website, please scan the following QR code:



Online Payment



http://conf.csig.org.cn/fair/394

To register on the microsite, please scan the following QR code:




中国图象图形学学会关于组织开展科技成果鉴定的通知

CSIG图像图形中国行承办方征集中

登录查看更多
3

相关内容

在机器学习中,表征学习或表示学习是允许系统从原始数据中自动发现特征检测或分类所需的表示的一组技术。这取代了手动特征工程,并允许机器学习特征并使用它们执行特定任务。在有监督的表征学习中,使用标记的输入数据来学习特征,包括监督神经网络,多层感知器和(监督)字典学习。在无监督表征学习中,特征是与未标记的输入数据一起学习的,包括字典学习,独立成分分析,自动编码器,矩阵分解和各种形式的聚类。
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
专知会员服务
39+阅读 · 2020年9月6日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2015年7月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
20+阅读 · 2019年11月23日
VIP会员
相关VIP内容
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
专知会员服务
39+阅读 · 2020年9月6日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2015年7月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员