Spiking Neural Networks (SNNs) is a practical approach toward more data-efficient deep learning by simulating neurons leverage on temporal information. In this paper, we propose the Temporal-Channel Joint Attention (TCJA) architectural unit, an efficient SNN technique that depends on attention mechanisms, by effectively enforcing the relevance of spike sequence along both spatial and temporal dimensions. Our essential technical contribution lies on: 1) compressing the spike stream into an average matrix by employing the squeeze operation, then using two local attention mechanisms with an efficient 1-D convolution to establish temporal-wise and channel-wise relations for feature extraction in a flexible fashion. 2) utilizing the Cross Convolutional Fusion (CCF) layer for modeling inter-dependencies between temporal and channel scope, which breaks the independence of the two dimensions and realizes the interaction between features. By virtue of jointly exploring and recalibrating data stream, our method outperforms the state-of-the-art (SOTA) by up to 15.7% in terms of top-1 classification accuracy on all tested mainstream static and neuromorphic datasets, including Fashion-MNIST, CIFAR10-DVS, N-Caltech 101, and DVS128 Gesture.


翻译:Spik NealNetworks(SNN)是一种实用的方法,通过模拟神经神经神经元在时间信息上的杠杆作用来提高数据效率的深层次学习。在本文中,我们建议采用Tempal-Channe 联合注意(TCJA)建筑单元,这是一个高效的SNN技术,取决于关注机制,在空间和时空两个方面有效地执行峰值序列的相关性。我们的重要技术贡献在于:1)通过使用挤压操作将尖峰流压缩成一个平均矩阵,然后利用两个具有1D效率的当地关注机制,以灵活的方式为特征提取建立时间和频道关系。 2)利用Cross Convolutional Commusion(CC)层来模拟时间和频道范围之间的相互依存关系,这打破了两个层面的独立性,并实现了各特征之间的相互作用。通过共同探索和重新校正数据流,我们的方法超越了最新技术(SOVTA), 在所有测试的主流静态和神经变形数据集(包括Fash-GARS-D-101、C-DFARS-DS-D10、C-DIS-DIS-DIS-DIS10和GIS-DIS-DIS-DIS-DIS-DIS-DIS-DAR10和DIS1-DIS-DIS-DIS-DIS-DIS-DIS-DIS1)上最高分类精确度达157%)中,比了15.7。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
115+阅读 · 2022年4月21日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
23+阅读 · 2018年10月24日
Arxiv
11+阅读 · 2018年5月21日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员