项目名称: Navier-Stokes 方程组的若干存在性问题
项目编号: No.11471321
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 黄祥娣
作者单位: 中国科学院数学与系统科学研究院
项目金额: 66万元
中文摘要: Navier-Stokes 方程是一类非常重要的非线性偏微分方程,它主要刻画流体的运动行为,在航空动力学、天体物理、地质力学、天气预报、油气探测和信息处理等有着极其重要的应用背景。我们将研究Navier-Stokes方程组在可压缩流体和非齐次不可压缩流体中的退化性,奇性和强非线性的数学理论。这里面包括1)高维可压缩常系数和变系数的Navier-Stokes方程组一般大初值的存在性问题,特别是2维问题 2)高维可压缩流体光滑解爆破点集的性质研究3)高维非齐次不可压缩Navier-Stokes方程及其相关模型的整体存在性问题。
中文关键词: Navier-Stokes方程组;真空;光滑解;适定性
英文摘要: Navier-Stokes system consists one of the most significant nonlinear partial differential equations. It describes the motion of fluids which has widely and extremly important applications in aerospace dynamics,astrophysics, geology mechanics, weather broadcasting,oil and gas detection and information progressing, etc. We will investigate the theory of Navier-Stokes equations concerning degeneracy, singularity near vacuum and strong nonlinearity for both compressible fluids and inhomogeneous incompressible flows. It includes 1)Existence problems for multi-dimensional compressible Navier-Stokes equations with constant or variable viscosity coefficients allowing arbitrary large data, especially two dimensional case. 2)Characterization of blowup set of smooth solutions for multi-dimensional compressible flows. 3)Global solvability for multi-dimensional inhomogeneous incompressible flows, including Navier-Stokes equations and related models.
英文关键词: Navier-Stokes Equations;Vacuum;Classical solutions;Well Posedness