Unsupervised Learning via Meta-Learning

2019 年 1 月 3 日 CreateAMind


Unsupervised Learning via Meta-Learning


https://sites.google.com/view/unsupervised-via-meta


Kyle Hsu, Sergey Levine, Chelsea Finn

arXiv preprint

Abstract

A central goal of unsupervised learning is to acquire representations from unlabeled data or experience that can be used for more effective learning of downstream tasks from modest amounts of labeled data. Many prior unsupervised learning works aim to do so by developing proxy objectives based on reconstruction, disentanglement, prediction, and other metrics. Instead, we develop an unsupervised learning method that explicitly optimizes for the ability to learn a variety of tasks from small amounts of data. To do so, we construct tasks from unlabeled data in an automatic way and run meta-learning over the constructed tasks. Surprisingly, we find that, when integrated with meta-learning, relatively simple mechanisms for task design, such as clustering unsupervised representations, lead to good performance on a variety of downstream tasks. Our experiments across four image datasets indicate that our unsupervised meta-learning approach acquires a learning algorithm without any labeled data that is applicable to a wide range of downstream classification tasks, improving upon the representation learned by four prior unsupervised learning methods.


Algorithm

Input: a dataset consisting only of unlabeled images. Output: a learning procedure.

1. We run an out-of-the-box unsupervised learning algorithm to learn an embedding function. We pass each image through this function to obtain its embedding, which can be thought of as a summary of the image.

2. We consider image classification tasks. Each such task consists of some classes, and some examples for each class.  We first create multiple sets of pseudo-labels for the images via clustering their embeddings. To construct a task, we sample a set of labels, sample a few clusters, and sample a few embedding points from each cluster. We select the images whose embeddings were sampled. Some of a task's image examples are designated as training examples (colored border), and the rest are treated as testing examples (gray border).

3. The automatically generated tasks are fed into a meta-learning algorithm. For each task, the meta-learning algorithm applies the current form of its eventual output, a learning procedure, to the task's training examples. This results in a classifier that is tailored to the current task. The meta-learning algorithm then assesses its learning procedure by testing how well the classifier does on the task's testing examples. Based on this, it updates its learning procedure.

We call our method Clustering to Automatically Construct Tasks for Unsupervised meta-learning (CACTUs). The key insight which CACTUs relies on is that while the embeddings may not be directly suitable for learning downstream tasks, they can still be leveraged to create structured yet diverse training tasks. We assess performance by deploying the meta-learned learning procedure to new human-specified tasks based on unseen images and classes.Code



For CACTUs code that uses model-agnostic meta-learning (MAML), please see this GitHub repo.

For CACTUs code that uses prototypical networks (ProtoNets), please see this GitHub repo.

Credits

The results in this project leveraged six open-source codebases from six prior works.

We used four unsupervised learning methods for step 1:

  • "Adversarial Feature Learning": paper, code

  • "Deep Clustering for Unsupervised Learning of Visual Features": paper, code

  • "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets": paper, code

  • "Understanding and Improving Interpolation in Autoencoders via an Adversarial Regularizer": paper, code

We used two meta-learning methods for step 3:

  • "Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks": paper, code

  • "Prototypical Networks for Few-Shot Learning": paper, code







登录查看更多
41

相关内容

现实生活中常常会有这样的问题:缺乏足够的先验知识,因此难以人工标注类别或进行人工类别标注的成本太高。很自然地,我们希望计算机能代我们完成这些工作,或至少提供一些帮助。根据类别未知(没有被标记)的训练样本解决模式识别中的各种问题,称之为无监督学习
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
72+阅读 · 2020年4月24日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
13+阅读 · 2020年4月12日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Arxiv
136+阅读 · 2018年10月8日
Arxiv
7+阅读 · 2018年6月8日
Arxiv
7+阅读 · 2018年5月23日
Arxiv
9+阅读 · 2018年3月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
13+阅读 · 2020年4月12日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Arxiv
136+阅读 · 2018年10月8日
Arxiv
7+阅读 · 2018年6月8日
Arxiv
7+阅读 · 2018年5月23日
Arxiv
9+阅读 · 2018年3月28日
Top
微信扫码咨询专知VIP会员