In this work, we address the problem of 3D object detection from point cloud data in real time. For autonomous vehicles to work, it is very important for the perception component to detect the real world objects with both high accuracy and fast inference. We propose a novel neural network architecture along with the training and optimization details for detecting 3D objects using point cloud data. We present anchor design along with custom loss functions used in this work. A combination of spatial and channel wise attention module is used in this work. We use the Kitti 3D Birds Eye View dataset for benchmarking and validating our results. Our method surpasses previous state of the art in this domain both in terms of average precision and speed running at > 30 FPS. Finally, we present the ablation study to demonstrate that the performance of our network is generalizable. This makes it a feasible option to be deployed in real time applications like self driving cars.
翻译:在这项工作中,我们从点云数据实时处理3D物体探测问题。对于自主飞行器来说,感知元件非常重要,以便以高精度和快速推导两种方式探测真实世界物体。我们提议建立一个新型神经网络结构,同时提供使用点云数据的培训和优化细节,以探测3D物体。我们提出锚设计以及这项工作中使用的自定义损失函数。在这项工作中使用了空间和频道智慧关注模块的组合。我们使用基迪 3D Birks 眼视图数据集来进行基准设定和验证我们的结果。我们的方法超过了这一领域中的平均精确度和速度大于30FPS的先进水平。最后,我们提出动画研究,以证明我们的网络的性能是通用的。这使得在像自行驾驶汽车这样的实时应用中部署它成为一个可行的选择。