Keypoint-based methods are a relatively new paradigm in object detection, eliminating the need for anchor boxes and offering a simplified detection framework. Keypoint-based CornerNet achieves state of the art accuracy among single-stage detectors. However, this accuracy comes at high processing cost. In this work, we tackle the problem of efficient keypoint-based object detection and introduce CornerNet-Lite. CornerNet-Lite is a combination of two efficient variants of CornerNet: CornerNet-Saccade, which uses an attention mechanism to eliminate the need for exhaustively processing all pixels of the image, and CornerNet-Squeeze, which introduces a new compact backbone architecture. Together these two variants address the two critical use cases in efficient object detection: improving efficiency without sacrificing accuracy, and improving accuracy at real-time efficiency. CornerNet-Saccade is suitable for offline processing, improving the efficiency of CornerNet by 6.0x and the AP by 1.0% on COCO. CornerNet-Squeeze is suitable for real-time detection, improving both the efficiency and accuracy of the popular real-time detector YOLOv3 (34.4% AP at 34ms for CornerNet-Squeeze compared to 33.0% AP at 39ms for YOLOv3 on COCO). Together these contributions for the first time reveal the potential of keypoint-based detection to be useful for applications requiring processing efficiency.


翻译:以关键点为基础的方法是一种相对较新的物体探测模式,消除了锚箱的需求,提供了简化的探测框架。以关键点为基础的CornerNet 实现了单级探测器的精度。然而,这种精度是以高加工成本产生的。在这项工作中,我们处理基于关键点的高效物体探测问题,并引入了CornerNet-Lite。CornerNet-Lite是CornerNet的两个有效变体的组合:CornerNet-Saccade,它使用一种关注机制,消除彻底处理图像所有像素的需要;CornerNet-Squeeze,它引入了新的紧凑骨干结构。这两个变体一起解决了高效物体探测的两个关键使用案例:在不牺牲准确性的情况下提高效率,提高实时效率。CornerNet-Scathade适合离线处理,将CornerNet的效率提高6.0x,将APNet-Squeze的使用效率提高1.0%。CoronerNet-Squeze适合实时检测,同时提高普通实时检测%的ASOv-Conal-OrentalSyOrental 3,在Con-Ovvv-OrentalSyalSyOs 3,在Avv-RentrentrentrentrentralSyO3,在AvOsal-Systrisal-SyO3,这是A_AvO_SyO_Centrentrentrentrentrentalental-resental Exental-resental-resents 3,这是Adro_Acentaldrocresents的实时探测3,这是Acental-resental_Adrocrecresents 3,在354403.403,这是3,这是394Adrocresents。

3
下载
关闭预览

相关内容

最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
CornerNet: Detecting Objects as Paired Keypoints 论文笔记
统计学习与视觉计算组
7+阅读 · 2018年9月27日
ECCV 2018 | CornerNet:目标检测算法新思路
极市平台
13+阅读 · 2018年8月11日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
EfficientDet: Scalable and Efficient Object Detection
Arxiv
6+阅读 · 2019年11月20日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
12+阅读 · 2019年4月9日
Arxiv
5+阅读 · 2019年4月8日
Arxiv
5+阅读 · 2018年4月17日
Arxiv
8+阅读 · 2018年1月12日
VIP会员
相关VIP内容
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
Top
微信扫码咨询专知VIP会员