gan生成图像at 1024² 的 代码 论文

2017 年 10 月 31 日 CreateAMind

Progressive Growing of GANs for Improved Quality, Stability, and Variation

https://github.com/tkarras/progressive_growing_of_gans

Tero Karras (NVIDIA), Timo Aila (NVIDIA), Samuli Laine (NVIDIA), Jaakko Lehtinen (NVIDIA and Aalto University)

Picture: Two imaginary celebrities that were dreamed up by a random number generator.

Abstract: 
We describe a new training methodology for generative adversarial networks. The key idea is to grow both the generator and discriminator progressively: starting from a low resolution, we add new layers that model increasingly fine details as training progresses. This both speeds the training up and greatly stabilizes it, allowing us to produce images of unprecedented quality, e.g., CelebA images at 1024². We also propose a simple way to increase the variation in generated images, and achieve a record inception score of 8.80 in unsupervised CIFAR10. Additionally, we describe several implementation details that are important for discouraging unhealthy competition between the generator and discriminator. Finally, we suggest a new metric for evaluating GAN results, both in terms of image quality and variation. As an additional contribution, we construct a higher-quality version of the CelebA dataset.

Links

  • Paper (NVIDIA research)

  • Paper (arXiv)

  • Result video (YouTube)

  • One hour of imaginary celebrities (YouTube)

  • Pre-trained networks (Google Drive)

  • Datasets (currently unavailable)

License

The source code is available under the CC BY-NC license:

# Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the Creative Commons Attribution-NonCommercial
# 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Compatibility

We have tested the implementation on the following system:

  • NVIDIA DGX-1 with Tesla P100

  • BaseOS 2.1.0, 4.4.0-92-generic kernel

  • NVIDIA driver 384.81, CUDA Toolkit 9.0

  • Python 2.7.11

  • Bleeding-edge version of Theano and Lasagne from Oct 17, 2017

We are planning to add support for TensorFlow and multi-GPU in the near future.




https://github.com/tkarras/progressive_growing_of_gans

登录查看更多
4

相关内容

【CVPR2020】MSG-GAN:用于稳定图像合成的多尺度梯度GAN
专知会员服务
27+阅读 · 2020年4月6日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
近期必读的7篇 CVPR 2019【视觉问答】相关论文和代码
专知会员服务
35+阅读 · 2020年1月10日
必读的10篇 CVPR 2019【生成对抗网络】相关论文和代码
专知会员服务
31+阅读 · 2020年1月10日
八篇 ICCV 2019 【图神经网络(GNN)+CV】相关论文
专知会员服务
29+阅读 · 2020年1月10日
生成式对抗网络GAN异常检测
专知会员服务
114+阅读 · 2019年10月13日
计算机视觉最佳实践、代码示例和相关文档
专知会员服务
17+阅读 · 2019年10月9日
【ICLR2020】五篇Open代码的GNN论文
专知会员服务
47+阅读 · 2019年10月2日
【ICML2019】IanGoodfellow自注意力GAN的代码与PPT
GAN生成式对抗网络
18+阅读 · 2019年6月30日
带你读论文 | 生成对抗网络GAN论文TOP 10
微软研究院AI头条
24+阅读 · 2019年4月11日
必读!生成对抗网络GAN论文TOP 10
全球人工智能
6+阅读 · 2019年3月19日
2018 年最棒的三篇 GAN 论文
AI科技评论
4+阅读 · 2019年1月14日
【深度】Ian Goodfellow 强推:GAN 进展跟踪 10 大论文(附下载)
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
8+阅读 · 2018年5月21日
Arxiv
8+阅读 · 2018年5月1日
Arxiv
4+阅读 · 2018年3月23日
VIP会员
相关VIP内容
【CVPR2020】MSG-GAN:用于稳定图像合成的多尺度梯度GAN
专知会员服务
27+阅读 · 2020年4月6日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
近期必读的7篇 CVPR 2019【视觉问答】相关论文和代码
专知会员服务
35+阅读 · 2020年1月10日
必读的10篇 CVPR 2019【生成对抗网络】相关论文和代码
专知会员服务
31+阅读 · 2020年1月10日
八篇 ICCV 2019 【图神经网络(GNN)+CV】相关论文
专知会员服务
29+阅读 · 2020年1月10日
生成式对抗网络GAN异常检测
专知会员服务
114+阅读 · 2019年10月13日
计算机视觉最佳实践、代码示例和相关文档
专知会员服务
17+阅读 · 2019年10月9日
【ICLR2020】五篇Open代码的GNN论文
专知会员服务
47+阅读 · 2019年10月2日
相关资讯
【ICML2019】IanGoodfellow自注意力GAN的代码与PPT
GAN生成式对抗网络
18+阅读 · 2019年6月30日
带你读论文 | 生成对抗网络GAN论文TOP 10
微软研究院AI头条
24+阅读 · 2019年4月11日
必读!生成对抗网络GAN论文TOP 10
全球人工智能
6+阅读 · 2019年3月19日
2018 年最棒的三篇 GAN 论文
AI科技评论
4+阅读 · 2019年1月14日
【深度】Ian Goodfellow 强推:GAN 进展跟踪 10 大论文(附下载)
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员