Detecting objects in aerial images is challenging for at least two reasons: (1) target objects like pedestrians are very small in pixels, making them hardly distinguished from surrounding background; and (2) targets are in general sparsely and non-uniformly distributed, making the detection very inefficient. In this paper, we address both issues inspired by observing that these targets are often clustered. In particular, we propose a Clustered Detection (ClusDet) network that unifies object clustering and detection in an end-to-end framework. The key components in ClusDet include a cluster proposal sub-network (CPNet), a scale estimation sub-network (ScaleNet), and a dedicated detection network (DetecNet). Given an input image, CPNet produces object cluster regions and ScaleNet estimates object scales for these regions. Then, each scale-normalized cluster region is fed into DetecNet for object detection. ClusDet has several advantages over previous solutions: (1) it greatly reduces the number of chips for final object detection and hence achieves high running time efficiency, (2) the cluster-based scale estimation is more accurate than previously used single-object based ones, hence effectively improves the detection for small objects, and (3) the final DetecNet is dedicated for clustered regions and implicitly models the prior context information so as to boost detection accuracy. The proposed method is tested on three popular aerial image datasets including VisDrone, UAVDT and DOTA. In all experiments, ClusDet achieves promising performance in comparison with state-of-the-art detectors. Code will be available in \url{https://github.com/fyangneil}.

4
下载
关闭预览

相关内容

CLUSTER:IEEE International Conference on Cluster Computing。 Explanation:IEEE集群计算国际会议。 Publisher:IEEE。 SIT: https://dblp.uni-trier.de/db/conf/cluster/

Detection and classification of objects in aerial imagery have several applications like urban planning, crop surveillance, and traffic surveillance. However, due to the lower resolution of the objects and the effect of noise in aerial images, extracting distinguishing features for the objects is a challenge. We evaluate CenterNet, a state of the art method for real-time 2D object detection, on the VisDrone2019 dataset. We evaluate the performance of the model with different backbone networks in conjunction with varying resolutions during training and testing.

0
6
下载
预览

Compared with object detection in static images, object detection in videos is more challenging due to degraded image qualities. An effective way to address this problem is to exploit temporal contexts by linking the same object across video to form tubelets and aggregating classification scores in the tubelets. In this paper, we focus on obtaining high quality object linking results for better classification. Unlike previous methods that link objects by checking boxes between neighboring frames, we propose to link in the same frame. To achieve this goal, we extend prior methods in following aspects: (1) a cuboid proposal network that extracts spatio-temporal candidate cuboids which bound the movement of objects; (2) a short tubelet detection network that detects short tubelets in short video segments; (3) a short tubelet linking algorithm that links temporally-overlapping short tubelets to form long tubelets. Experiments on the ImageNet VID dataset show that our method outperforms both the static image detector and the previous state of the art. In particular, our method improves results by 8.8% over the static image detector for fast moving objects.

0
3
下载
预览

The task of detecting 3D objects in point cloud has a pivotal role in many real-world applications. However, 3D object detection performance is behind that of 2D object detection due to the lack of powerful 3D feature extraction methods. In order to address this issue, we propose to build a 3D backbone network to learn rich 3D feature maps by using sparse 3D CNN operations for 3D object detection in point cloud. The 3D backbone network can inherently learn 3D features from almost raw data without compressing point cloud into multiple 2D images and generate rich feature maps for object detection. The sparse 3D CNN takes full advantages of the sparsity in the 3D point cloud to accelerate computation and save memory, which makes the 3D backbone network achievable. Empirical experiments are conducted on the KITTI benchmark and results show that the proposed method can achieve state-of-the-art performance for 3D object detection.

0
8
下载
预览

Object detection in remote sensing, especially in aerial images, remains a challenging problem due to low image resolution, complex backgrounds, and variation of scale and angles of objects in images. In current implementations, multi-scale based and angle-based networks have been proposed and generate promising results with aerial image detection. In this paper, we propose a novel loss function, called Salience Biased Loss (SBL), for deep neural networks, which uses salience information of the input image to achieve improved performance for object detection. Our novel loss function treats training examples differently based on input complexity in order to avoid the over-contribution of easy cases in the training process. In our experiments, RetinaNet was trained with SBL to generate an one-stage detector, SBL-RetinaNet. SBL-RetinaNet is applied to the largest existing public aerial image dataset, DOTA. Experimental results show our proposed loss function with the RetinaNet architecture outperformed other state-of-art object detection models by at least 4.31 mAP, and RetinaNet by 2.26 mAP with the same inference speed of RetinaNet.

0
5
下载
预览

Object detection is a fundamental and challenging problem in aerial and satellite image analysis. More recently, a two-stage detector Faster R-CNN is proposed and demonstrated to be a promising tool for object detection in optical remote sensing images, while the sparse and dense characteristic of objects in remote sensing images is complexity. It is unreasonable to treat all images with the same region proposal strategy, and this treatment limits the performance of two-stage detectors. In this paper, we propose a novel and effective approach, named deep adaptive proposal network (DAPNet), address this complexity characteristic of object by learning a new category prior network (CPN) on the basis of the existing Faster R-CNN architecture. Moreover, the candidate regions produced by DAPNet model are different from the traditional region proposal network (RPN), DAPNet predicts the detail category of each candidate region. And these candidate regions combine the object number, which generated by the category prior network to achieve a suitable number of candidate boxes for each image. These candidate boxes can satisfy detection tasks in sparse and dense scenes. The performance of the proposed framework has been evaluated on the challenging NWPU VHR-10 data set. Experimental results demonstrate the superiority of the proposed framework to the state-of-the-art.

0
5
下载
预览

In this paper, we propose an efficient and fast object detector which can process hundreds of frames per second. To achieve this goal we investigate three main aspects of the object detection framework: network architecture, loss function and training data (labeled and unlabeled). In order to obtain compact network architecture, we introduce various improvements, based on recent work, to develop an architecture which is computationally light-weight and achieves a reasonable performance. To further improve the performance, while keeping the complexity same, we utilize distillation loss function. Using distillation loss we transfer the knowledge of a more accurate teacher network to proposed light-weight student network. We propose various innovations to make distillation efficient for the proposed one stage detector pipeline: objectness scaled distillation loss, feature map non-maximal suppression and a single unified distillation loss function for detection. Finally, building upon the distillation loss, we explore how much can we push the performance by utilizing the unlabeled data. We train our model with unlabeled data using the soft labels of the teacher network. Our final network consists of 10x fewer parameters than the VGG based object detection network and it achieves a speed of more than 200 FPS and proposed changes improve the detection accuracy by 14 mAP over the baseline on Pascal dataset.

0
5
下载
预览

We introduce and tackle the problem of zero-shot object detection (ZSD), which aims to detect object classes which are not observed during training. We work with a challenging set of object classes, not restricting ourselves to similar and/or fine-grained categories cf. prior works on zero-shot classification. We follow a principled approach by first adapting visual-semantic embeddings for ZSD. We then discuss the problems associated with selecting a background class and motivate two background-aware approaches for learning robust detectors. One of these models uses a fixed background class and the other is based on iterative latent assignments. We also outline the challenge associated with using a limited number of training classes and propose a solution based on dense sampling of the semantic label space using auxiliary data with a large number of categories. We propose novel splits of two standard detection datasets - MSCOCO and VisualGenome and discuss extensive empirical results to highlight the benefits of the proposed methods. We provide useful insights into the algorithm and conclude by posing some open questions to encourage further research.

0
6
下载
预览

We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.

0
19
下载
预览

As we move towards large-scale object detection, it is unrealistic to expect annotated training data for all object classes at sufficient scale, and so methods capable of unseen object detection are required. We propose a novel zero-shot method based on training an end-to-end model that fuses semantic attribute prediction with visual features to propose object bounding boxes for seen and unseen classes. While we utilize semantic features during training, our method is agnostic to semantic information for unseen classes at test-time. Our method retains the efficiency and effectiveness of YOLO for objects seen during training, while improving its performance for novel and unseen objects. The ability of state-of-art detection methods to learn discriminative object features to reject background proposals also limits their performance for unseen objects. We posit that, to detect unseen objects, we must incorporate semantic information into the visual domain so that the learned visual features reflect this information and leads to improved recall rates for unseen objects. We test our method on PASCAL VOC and MS COCO dataset and observed significant improvements on the average precision of unseen classes.

0
5
下载
预览

Object detection is an important and challenging problem in computer vision. Although the past decade has witnessed major advances in object detection in natural scenes, such successes have been slow to aerial imagery, not only because of the huge variation in the scale, orientation and shape of the object instances on the earth's surface, but also due to the scarcity of well-annotated datasets of objects in aerial scenes. To advance object detection research in Earth Vision, also known as Earth Observation and Remote Sensing, we introduce a large-scale Dataset for Object deTection in Aerial images (DOTA). To this end, we collect $2806$ aerial images from different sensors and platforms. Each image is of the size about 4000-by-4000 pixels and contains objects exhibiting a wide variety of scales, orientations, and shapes. These DOTA images are then annotated by experts in aerial image interpretation using $15$ common object categories. The fully annotated DOTA images contains $188,282$ instances, each of which is labeled by an arbitrary (8 d.o.f.) quadrilateral To build a baseline for object detection in Earth Vision, we evaluate state-of-the-art object detection algorithms on DOTA. Experiments demonstrate that DOTA well represents real Earth Vision applications and are quite challenging.

0
17
下载
预览
小贴士
相关论文
Object detection on aerial imagery using CenterNet
Dheeraj Reddy Pailla,Varghese Kollerathu,Sai Saketh Chennamsetty
6+阅读 · 2019年8月22日
Peng Tang,Chunyu Wang,Xinggang Wang,Wenyu Liu,Wenjun Zeng,Jingdong Wang
3+阅读 · 2019年4月8日
Xuesong Li,Jose E Guivant,Ngaiming Kwok,Yongzhi Xu
8+阅读 · 2019年1月24日
Peng Sun,Guang Chen,Guerdan Luke,Yi Shang
5+阅读 · 2018年10月18日
Deep Adaptive Proposal Network for Object Detection in Optical Remote Sensing Images
Lin Cheng,Xu Liu,Lingling Li,Licheng Jiao,Xu Tang
5+阅读 · 2018年7月19日
Rakesh Mehta,Cemalettin Ozturk
5+阅读 · 2018年5月16日
Ankan Bansal,Karan Sikka,Gaurav Sharma,Rama Chellappa,Ajay Divakaran
6+阅读 · 2018年4月12日
Mingfei Gao,Ruichi Yu,Ang Li,Vlad I. Morariu,Larry S. Davis
19+阅读 · 2018年3月27日
Pengkai Zhu,Hanxiao Wang,Tolga Bolukbasi,Venkatesh Saligrama
5+阅读 · 2018年3月19日
Gui-Song Xia,Xiang Bai,Jian Ding,Zhen Zhu,Serge Belongie,Jiebo Luo,Mihai Datcu,Marcello Pelillo,Liangpei Zhang
17+阅读 · 2018年1月27日
相关VIP内容
专知会员服务
36+阅读 · 2020年7月4日
专知会员服务
100+阅读 · 2020年3月12日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
13+阅读 · 2019年5月22日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
5+阅读 · 2019年5月5日
Unsupervised Learning via Meta-Learning
CreateAMind
32+阅读 · 2019年1月3日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
18+阅读 · 2018年7月26日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
15+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
17+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
17+阅读 · 2017年11月5日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Top