目标检测,也叫目标提取,是一种与计算机视觉和图像处理有关的计算机技术,用于检测数字图像和视频中特定类别的语义对象(例如人,建筑物或汽车)的实例。深入研究的对象检测领域包括面部检测和行人检测。 对象检测在计算机视觉的许多领域都有应用,包括图像检索和视频监视。

知识荟萃

目标检测(物体检测, Object Detection) 专知荟萃

入门学习

  1. 图像目标检测(Object Detection)原理与实现 (1-6)
  2. 目标检测从入门到精通(1-3)
  3. 深度学习500问之目标检测
  4. 目标检测(Object Detection)入门

综述

  1. 地平线黄李超开讲:深度学习和物体检测!

  2. 对话CVPR2016:目标检测新进展:

  3. 基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN:

  4. 基于深度学习的目标检测研究进展

  5. 讲堂干货No.1|山世光-基于深度学习的目标检测技术进展与展望

  6. 基于特征共享的高效物体检测 Faster R-CNN和ResNet的作者任少卿 博士毕业论文 中文

  7. R-CNN:论文笔记

  8. Fast-RCNN:

  9. Faster-RCNN:

  10. FPN:

  11. R-FCN:

  12. SSD:

  13. YOLO:

  14. DenseBox:余凯特邀报告:基于密集预测图的物体检测技术造就全球领先的ADAS系统

  15. PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection - [http://www.cnblogs.com/xueyuxiaolang/p/5959442.html]

  16. 深度学习论文笔记:DSSD - [https://jacobkong.github.io/blog/2938514597/]

  17. DSOD

  18. Focal Loss:

  19. Soft-NMS:

  20. OHEM:

  21. Mask-RCNN 2017:

  22. 目标检测之比较

  23. 视觉目标检测和识别之过去,现在及可能

  24. CVPR2019目标检测方法进展综述

  25. 基于深度学习的「目标检测」算法综述

  26. 目标检测综述

  27. 深度学习目标检测网络汇总对比

  28. 从锚点到关键点,最新的目标检测方法发展到哪了

  29. 从RCNN到SSD,这应该是最全的一份目标检测算法盘点

  30. 目标检测中的不平衡问题:综述

  31. 深度学习中用于对象检测的最新进展

  32. 基于深度学习的对象检测概述

  33. 目标检测20年:综述

  1. 深度卷积神经网络时代目标检测的最新进展
  2. 用于通用对象检测的深度学习:综述

进阶文章

  1. Deep Neural Networks for Object Detection (基于DNN的对象检测)NIPS2013:

  2. R-CNN Rich feature hierarchies for accurate object detection and semantic segmentation:

  3. Fast R-CNN :

  4. Faster R-CNN Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks:

  5. Mask R-CNN

  6. Light-Head R-CNN

  7. Cascade R-CNN

  8. Scalable Object Detection using Deep Neural Networks

  9. Scalable, High-Quality Object Detection

  10. SPP-Net Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

  11. DeepID-Net DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection

  12. Object Detectors Emerge in Deep Scene CNNs

  13. segDeepM: Exploiting Segmentation and Context in Deep Neural Networks for Object Detection

  14. Object Detection Networks on Convolutional Feature Maps

  15. Improving Object Detection with Deep Convolutional Networks via Bayesian Optimization and Structured Prediction

  16. DeepBox: Learning Objectness with Convolutional Networks

  17. Object detection via a multi-region & semantic segmentation-aware CNN model

  18. You Only Look Once: Unified, Real-Time Object Detection

  19. YOLOv2 YOLO9000: Better, Faster, Stronger

  20. YOLOv3

  21. YOLT

  22. AttentionNet: Aggregating Weak Directions for Accurate Object Detection

  23. DenseBox: Unifying Landmark Localization with End to End Object Detection

  24. SSD: Single Shot MultiBox Detector

  25. DSSD : Deconvolutional Single Shot Detector

  26. FSSD

  27. ESSD

  28. MDSSD

  29. Pelee

  30. Fire SSD

  31. G-CNN: an Iterative Grid Based Object Detector

  32. HyperNet: Towards Accurate Region Proposal Generation and Joint Object Detection

  33. A MultiPath Network for Object Detection

  34. R-FCN: Object Detection via Region-based Fully Convolutional Networks

  35. A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection

  36. PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection

  37. Feature Pyramid Networks for Object Detection

  38. Learning Chained Deep Features and Classifiers for Cascade in Object Detection

  39. DSOD: Learning Deeply Supervised Object Detectors from Scratch

  40. Focal Loss for Dense Object Detection ICCV 2017 Best student paper award. Facebook AI Research

  41. MegDet

  42. Mask-RCNN 2017 ICCV 2017 Best paper award. Facebook AI Research

  43. RefineNet

  44. DetNet

  45. SSOD

  46. CornerNet

  47. M2Det

  48. 3D Object Detection

  49. ZSD(Zero-Shot Object Detection)

  50. OSD(One-Shot object Detection)

  51. Weakly Supervised Object Detection

  52. Softer-NMS

  53. NAS-FPN,可实现比Mask-RCNN、FPN、SSD更快更好的目标检测

  54. 多方向目标检测:水平边界框上的滑动顶点

  55. SM-NAS:结构到模块的神经体系结构搜索以进行目标检测

  56. 基于PSNet和边框回归的弱监督目标检测(WSOD)

  57. 带有可见IoU和Box Sign预测器的遮挡性行人检测

  58. CSPNet:可以增强CNN学习能力的新型Backbone

  59. ReBiF:残差双融合特征金字塔网络,用于较精确的Single-shot目标检测

  60. 目标检测的性能上界讨论

  61. DIoU Loss:更快更好地学习边界框回归

  62. CoAE:用于One-Shot目标检测的共同注意和共同激励

  63. SAPD:Soft Anchor-Point目标检测

  64. MMOD:基于混合模型的目标检测边界框密度估计

  65. IENet:方向性航空目标检测的One Stage Anchor Free检测器

  66. MnasFPN:用于移动设备上目标检测的延迟感知的金字塔体系结构

  67. IPG-Net:用于目标检测的图像金字塔引导网络

  68. MAL:用于目标检测的多Anchor学习

  69. ATSS:缩小Anchor-free和Anchor-based的性能差距:通过自适应训练样本选择

  70. Strong-Weak Distribution Alignment for Adaptive Object Detection

  71. PartNet: A Recursive Part Decomposition Network for Fine-grained and Hierarchical Shape Segmentation

  72. Deep HoughVoting for 3D Object Detection in Point Clouds

  73. Simultaneous multi-view instance detection with learned geometric soft-constraints

  74. Cap2Det: Learning to Amplify Weak Caption Supervision for Object Detection

  75. Towards Adversarially Robust Object Detection

  76. Multi-adversarial Faster-RCNN for Unrestricted Object Detection

  77. Selectivity or Invariance: Boundary-aware Salient Object Detection

  78. Joint Monocular 3D Detection and Tracking

  79. GA-DAN: Geometry-Aware Domain Adaptation Network for Scene Text Detection and Recognition

  80. ThunderNet: Towards Real-time Generic Object Detection

  81. MemorizingNormality to Detect Anomaly: Memory-augmented Deep Autoencoder (MemAE) forUnsupervised Anomaly Detection

Tutorial

  1. CVPR'17 Tutorial Deep Learning for Objects and Scenes by Kaiming He Ross Girshick
  2. ICCV 2015 Tools for Efficient Object Detection
  3. Object Detection
  4. Image Recognition and Object Detection : Part 1
  5. R-CNN for Object Detection
  6. 史上最详尽的yolo教程
  7. Keras-RetinaNet训练自己的数据详细教程

视频教程

  1. cs231 第11讲 Detection and Segmentation
  2. Deep Learning for Instance-level Object Understanding by Ross Girshick.
  3. (全)深度学习之目标检测常用算法原理+实践精讲
  4. 最全的目标检测原理讲解
  5. 深度学习之分类与目标检测
  6. 2019最新基于深度学习的目标检测原理及实践教程
  7. Tensorflow Object Detection Tutorial

代码

  1. R-CNN

  2. Fast R-CNN:

  3. Faster R-CNN

  4. SPP-Net

  5. YOLO

  6. YOLOv2

  7. YOLOv3

  8. SSD

  9. Recurrent Scale Approximation for Object Detection in CNN

  10. Mask-RCNN 2017

  11. Light-Head R-CNN

  12. Cascade R-CNN

  13. YOLT

  14. DSSD

  15. Pelee

  16. R-FCN

  17. FPN

  18. DSOD

  19. RetinaNet

  20. MegDet

  21. RefineNet

  22. DetNet

  23. CornerNet

  24. M2Det

  25. 3D Object Detection

  26. Softer-NMS

领域专家

  1. Ross Girshick (rbg 大神)
    • [http://www.rossgirshick.info/]
    • Ross Girshick是Facebook AI Research(FAIR)的研究科学家,致力于计算机视觉和机器学习。于2012年在Pedro Felzenszwalb的指导下获得了芝加哥大学的计算机科学博士学位。在加入FAIR之前,Ross是Redmond的Microsoft Research研究员和加利福尼亚大学伯克利分校的博士后。兴趣包括将自然语言处理与计算机视觉相结合的实例级对象理解和视觉推理挑战。获得2017年PAMI青年研究奖,并且以开发基于R-CNN(基于区域的卷积神经网络)方法进行物体检测而闻名。2017年,还获得了ICCV的马尔奖。
  2. Kaiming He, Facebook人工智能实验室科学家Kaiming He
    • [http://kaiminghe.com/]
    • Facebook AI Research(FAIR)的研究科学家。曾在Microsoft Research Asia(MSRA)工作,在获得博士学位后于2011年加入FAIR。研究兴趣是计算机视觉和深度学习。 获得2018年PAMI青年研究员奖,CVPR 2009最佳论文奖,CVPR 2016,ICCV 2017,ICCV 2017最佳学生论文奖以及ECCV 2018最佳论文荣誉奖的获得者。残差网络(ResNets)是Google Scholar Metrics 2019 中所有领域引用最多的论文.ResNets的应用还包括语言, 语音和AlphaGo。
  3. Shaoqing Ren
    • [http://shaoqingren.com/]
    • 2016年9月与他人共同创立了自动驾驶软件初创公司Momenta。目前,团队正在研究创新的计算机视觉解决方案,以使自动驾驶汽车成为现实。 获得中国科学技术大学和Microsoft Research Asia的联合博士学位的博士学位。我的上司是孙健博士。于2011年从同一部门获得了工学学士学位。
  4. Jian Sun
    • [http://www.jiansun.org/]
    • 首席科学家, MEGVII Technology研究部常务董事。 在Microsoft Research工作了十三年后,加入MEGVII Technology(也称为Face ++,于2016年7月)担任首席科学家和研究总经理。 生于中国西安,秦始皇兵马俑所在地。他获得了理学学士,硕士学位和博士学位。分别于1997年,2000年和2003年获得西安交通大学的博士学位。紧随其后,他加入了Microsoft Research Asia,一直从事计算机视觉和计算机图形学领域的工作,尤其对解决基础研究问题和构建实际的工作系统感兴趣。他的主要研究兴趣是计算摄影和基于图像的深度学习。
  5. Tsung-Yi Lin
    • [https://vision.cornell.edu/se3/people/tsung-yi-lin/]
    • 于2017年 在Serge Belongie的指导下在康奈尔纽约技术学院获得博士学位。研究兴趣是计算机视觉,尤其是学习用于交叉视图图像匹配和对象检测的视觉表示。目前是Google Brain的研究科学家。
  6. Ali Farhadi
    • [https://homes.cs.washington.edu/~ali/]
    • 华盛顿大学计算机科学与工程系的副教授。领导着艾伦人工智能研究所的PRIOR团队。主要对计算机视觉,机器学习,自然语言和视觉的交集,语义在视觉理解中的作用分析以及视觉推理感兴趣。

初步版本,水平有限,有错误或者不完善的地方,欢迎大家提建议和补充,会一直保持更新,本文为专知内容组原创内容,未经允许不得转载,如需转载请发送邮件至fangquanyi@gmail.com 或 联系微信专知小助手(Rancho_Fang)

敬请关注http://www.zhuanzhi.ai 和关注专知公众号,获取第一手AI相关知识

最近更新:2019-12-10

VIP内容

论文标题:https://www.zhuanzhi.ai/paper/73cf9736c65be0102766f210e8693513

论文链接:https://arxiv.org/abs/2106.10823

作者单位:中国人民大学

26页综述,共计99篇参考文献!本文对基于图像(单目/立体)、点云、多模态融合的3D目标检测技术进行全面调研,内容包括传感器、基础知识和最经典和最先进的检测方法及其优缺点。

自动驾驶被认为是保护人类免受严重碰撞的最有希望的补救措施之一。为此,3D目标检测作为此类感知系统的核心基础,尤其是在路径规划、运动预测、碰撞避免等方面。通常,立体或单目图像与相应的3D点云已经是3D物体的标准布局检测,其中点云越来越普遍,提供准确的深度信息。尽管已有努力,但点云上的3D目标检测仍处于起步阶段,因为点云本质上的高度稀疏性和不规则性,相机视图和 LiDAR 鸟瞰视图之间的错位视图,用于模态协同,远距离的遮挡和尺度变化,最近,3D对象检测取得了重大进展,正在研究大量文献以解决这一视觉任务。因此,我们全面回顾了该领域的最新进展,涵盖了所有主要主题,包括传感器、基础知识和最近最先进的检测方法及其优缺点。此外,我们引入了指标并提供了对流行公共数据集的定量比较。在对所调查的工作进行深入分析后,将明智地确定未来工作的途径。最后,我们总结了这篇论文。

成为VIP会员查看完整内容
0
9

最新论文

In recent years, light field (LF) capture and processing has become an integral part of media production. The richness of information available in LFs has enabled novel applications like post-capture depth-of-field editing, 3D reconstruction, segmentation and matting, saliency detection, object detection and recognition, and mixed reality. The efficacy of such applications depends on certain underlying requirements, which are often ignored. For example, some operations such as noise-reduction, or hyperfan-filtering are only possible if a scene point Lambertian radiator. Some other operations such as the removal of obstacles or looking behind objects are only possible if there is at least one ray capturing the required scene point. Consequently, the ray distribution representing a certain scene point is an important characteristic for evaluating processing possibilities. The primary idea in this paper is to establish a relation between the capturing setup and the rays of the LF. To this end, we discretize the view frustum. Traditionally, a uniform discretization of the view frustum results in voxels that represents a single sample on a regularly spaced, 3-D grid. Instead, we use frustum-shaped voxels (froxels), by using depth and capturing-setup dependent discretization of the view frustum. Based on such discretization, we count the number of rays mapping to the same pixel on the capturing device(s). By means of this count, we propose histograms of ray-counts over the froxels (fristograms). Fristograms can be used as a tool to analyze and reveal interesting aspects of the underlying LF, like the number of rays originating from a scene point and the color distribution of these rays. As an example, we show its ability by significantly reducing the number of rays which enables noise reduction while maintaining the realistic rendering of non-Lambertian or partially occluded regions.

0
0
下载
预览
Top