We present a method for detecting objects in images using a single deep neural network. Our approach, named SSD, discretizes the output space of bounding boxes into a set of default boxes over different aspect ratios and scales per feature map location. At prediction time, the network generates scores for the presence of each object category in each default box and produces adjustments to the box to better match the object shape. Additionally, the network combines predictions from multiple feature maps with different resolutions to naturally handle objects of various sizes. Our SSD model is simple relative to methods that require object proposals because it completely eliminates proposal generation and subsequent pixel or feature resampling stage and encapsulates all computation in a single network. This makes SSD easy to train and straightforward to integrate into systems that require a detection component. Experimental results on the PASCAL VOC, MS COCO, and ILSVRC datasets confirm that SSD has comparable accuracy to methods that utilize an additional object proposal step and is much faster, while providing a unified framework for both training and inference. Compared to other single stage methods, SSD has much better accuracy, even with a smaller input image size. For $300\times 300$ input, SSD achieves 72.1% mAP on VOC2007 test at 58 FPS on a Nvidia Titan X and for $500\times 500$ input, SSD achieves 75.1% mAP, outperforming a comparable state of the art Faster R-CNN model. Code is available at https://github.com/weiliu89/caffe/tree/ssd .


翻译:我们用单一的深神经网络来显示图像中的天体。 我们的方法, 名为 SSD, 将捆绑框的输出空间分解成一组默认框, 覆盖不同方面的比例和比例, 每个地貌地图位置。 在预测时间, 网络为每个默认框中的每个对象类别生成评分, 并对框进行调整, 以更好地匹配对象形状。 此外, 网络将多个特性地图的预测与不同分辨率相结合, 自然处理不同大小的物体。 我们的 SSD 模型简单于需要对象建议的方法, 因为它完全消除了提案的生成以及随后的像素或特征重现阶段, 并且将所有计算都包含在一个单一的网络中。 这样SSD很容易培训和直接整合到需要检测组件的系统中。 PASAL VOC、 MS COCO和 ILSVRC 数据集的实验结果证实, SSD具有相似的精确度, 并且为培训和推断提供统一的框架。 与其他单阶段方法相比, SSD$ 500- 准确度, 即使SD在SD VSD1 上, 在 SAB 1 300 上, 快速的SD a 300 a excialtime a frialtime silal a frial deal imal deal sild sild silveal sild silveal silps, 在S.

5
下载
关闭预览

相关内容

SSD算法,其英文全名是Single Shot MultiBox Detector,Single shot指明了SSD算法属于one-stage方法,MultiBox指明了SSD是多框预测。
专知会员服务
54+阅读 · 2020年3月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
SSD多盒实时目标检测教程
论智
13+阅读 · 2018年4月5日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
5+阅读 · 2019年4月8日
Arxiv
11+阅读 · 2018年4月8日
Arxiv
7+阅读 · 2018年3月19日
Arxiv
8+阅读 · 2018年1月12日
VIP会员
相关VIP内容
专知会员服务
54+阅读 · 2020年3月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
SSD多盒实时目标检测教程
论智
13+阅读 · 2018年4月5日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Top
微信扫码咨询专知VIP会员