Dynamic objects have a significant impact on the robot's perception of the environment which degrades the performance of essential tasks such as localization and mapping. In this work, we address this problem by synthesizing plausible color, texture and geometry in regions occluded by dynamic objects. We propose the novel geometry-aware DynaFill architecture that follows a coarse-to-fine topology and incorporates our gated recurrent feedback mechanism to adaptively fuse information from previous timesteps. We optimize our architecture using adversarial training to synthesize fine realistic textures which enables it to hallucinate color and depth structure in occluded regions online in a spatially and temporally coherent manner, without relying on future frame information. Casting our inpainting problem as an image-to-image translation task, our model also corrects regions correlated with the presence of dynamic objects in the scene, such as shadows or reflections. We introduce a large-scale hyperrealistic dataset with RGB-D images, semantic segmentation labels, camera poses as well as groundtruth RGB-D information of occluded regions. Extensive quantitative and qualitative evaluations show that our approach achieves state-of-the-art performance, even in challenging weather conditions. Furthermore, we present results for retrieval-based visual localization with the synthesized images that demonstrate the utility of our approach.


翻译:动态天体对机器人对环境的感知有重大影响,机器人对环境的认识会降低诸如本地化和绘图等基本任务的性能。 在这项工作中,我们通过在动态天体所覆盖的区域合成合理的颜色、质地和几何来解决这一问题。 我们建议采用新颖的几何性能Dyna Finll 结构,该结构遵循粗到纤维地貌的地形学,并结合我们封闭的反复反馈机制,以适应性的方式将先前时间步骤的信息融合起来。 我们优化我们的架构,利用对抗性培训,以空间和时间上一致的方式,将精细现实的纹理整合起来,使其能够以空间和时间上一致的方式,在隐蔽的区域里,以隐蔽的颜色和深度结构,使其在不依赖未来框架信息的情况下,将我们画成的问题作为图像到图像的翻版翻译任务,我们的模型也纠正了区域与动态天体物体的存在相关的区域,例如阴影或反射镜。 我们引入了大规模超现实性数据集, RGB-D 图像, 语系分化标签, 相机在隐蔽区域里和地面上放置的RGB-D 图像检索,我们目前的图像的图像分析, 展示了我们目前的图像的定性- 的图像的定性- 展示, 展示,我们目前的图像的定性- 展示,我们目前的图像的图像- 展示的图像- 展示了我们是如何的图像的状态- 的状态- 展示- 展示- 的图像- 展示- 的图像- 展示- 性- 展示- 展示,我们进化的状态- 的状态- 的状态- 展示的图像- 的图像的图像- 性能性能性能性能性能性能性能- 展示, 展示了我们的状态- 的状态- 性能- 的状态- 的图像- 展示- 性- 性- 性- 性- 性能- 性能- 性能- 性能- 性能- 性能- 性能- 性能- 性能- 性能- 性能- 性能- 性能- 性能- 性能- 性能- 性能性能性能性能- 性能性能性能- 性能- 性能

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
专知会员服务
110+阅读 · 2020年3月12日
【论文推荐】小样本视频合成,Few-shot Video-to-Video Synthesis
专知会员服务
24+阅读 · 2019年12月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月16日
VIP会员
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员