Learning the Degradation Distribution for Blind Image Super-Resolution
Zhengxiong Luo, Yan Huang, Shang Li, Liang Wang, Tieniu Tan
当前的超分方法大多采用合成的成对的高清-低清样本来训练模型。为了避免合成数据与真实数据之间存在域差异,之前大部分方法采用可学习的退化模型去自适应地生成合成数据。这些降质模型通常是确定性的(deterministic),即一张高清图片只能用来合成一张低清样本。然而,真实场景中的退化方法通常是随机的,比如相机抖动造成的模糊和随机噪声。确定性的退化模型很难模拟真实退化方法的随机性。针对这一问题,本文提出一种概率(probabilistic)退化模型。该模型把退化当作随机变量进行研究,并通过学习从预定义的随机变量到退化方法的映射来建模其分布。和以往的确定性退化模型相比,我们的概率退化模型可以模拟更加多样的退化方法,从而生成更加丰富的高清-低清训练样本对,来帮助训练更加鲁棒的超分模型。在不同的数据集上的大量实验表明,我们的方法可以帮助超分模型在复杂降质环境中取得更好的结果。
基于概率退化模型的盲超分模型结构图