ICRA 2019 论文速览 | 基于Deep Learning 的SLAM

2019 年 7 月 22 日 计算机视觉life

点击上方“计算机视觉life”,选择“星标”

快速获得最新干货


笔者汇总了ICRA 2019 SLAM相关论文,总共分为四个部分:

Deep learning + traditional SLAM,见 ICRA 2019 论文速览 | SLAM 爱上 Deep Learning


Traditional SLAM/3D vision,见ICRA 2019 论文速览 | 传统SLAM、三维视觉算法进展


Deep learning based SLAM

SLAM evaluation and datasets


本文介绍:deep learning based SLAM

后续文章敬请期待

1.E2E-VO/ SLAM

GEN-SLAM: Generative Modeling for Monocular Simultaneous Localization and Mapping(深度学习位姿和深度图)

Keywords: SLAM, Localization, Visual-Based Navigation

Beyond Photometric Loss for Self-Supervised Ego-Motion Estimation(深度学习,自监督的深度和里程计,参考了GeoNet和SfmLearner)

Keywords: SLAM, Visual Learning, Localization

代码:
https://github.com/hlzz/DeepMatchVO

Learning Monocular Visual Odometry through Geometry-Aware Curriculum Learning(深度学习的VO)

Keywords: Localization, Visual Learning, Deep Learning in Robotics and Automation

GANVO: Unsupervised Deep Monocular Visual Odometry and Depth Estimation with Generative Adversarial Networks(深度学习 基于GAN的无监督深度和VO方法)

Keywords: Deep Learning in Robotics and Automation, Localization, Visual Tracking

Unsupervised Learning of Monocular Depth and Ego-Motion Using Multiple Masks(无监督深度学习的深度图和位姿网络)

Keywords: Deep Learning in Robotics and Automation, SLAM

2. E2E Navigation

(AWARD)Variational End-To-End Navigation and Localization(端到端定位导航)

Keywords: Deep Learning in Robotics and Automation, Computer Vision for Transportation, Autonomous Vehicle Navigation

Deep Reinforcement Learning of Navigation in a Complex and Crowded Environment with a Limited Field of View(强化学习机器人视觉导航)

Keywords: Deep Learning in Robotics and Automation, Collision Avoidance, Service Robots

Generalization through Simulation: Integrating Simulated and Real Data into Deep Reinforcement Learning for Vision-Based Autonomous Flight(强化学习的无人机自主导航)

Keywords: Deep Learning in Robotics and Automation

代码
https://github.com/gkahn13/GtS

3.Feature & VPR

(AWARD)Learning Scene Geometry for Visual Localization in Challenging Conditions (RGB和Depth中找出场景的结构化描述特征用于VPR)

Keywords: Localization, RGB-D Perception, Computer Vision for Other Robotic Applications

Localizing Discriminative Visual Landmarks for Place Recognition(VPR路标的显著性检测)

Keywords: Localization, Visual-Based Navigation, Computer Vision for Automation

Improving Keypoint Matching Using a Landmark-Based Image Representation(深度学习地标区域描述符和特征点匹配)

Keywords: SLAM, Localization

A Comparison of CNN-Based and Hand-Crafted Keypoint Descriptors(传统和深度学习特征描述子的光照和角度变化下的性能分析)

Keywords: SLAM, Visual-Based Navigation, Deep Learning in Robotics and Automation

A Multi-Domain Feature Learning Method for Visual Place Recognition(迁移学习的特征学习用于场景识别)

Keywords: Localization, SLAM, Performance Evaluation and Benchmarking

Night-To-Day Image Translation for Retrieval-Based Localization(图像迁移方法的的位置定位)

Keywords: Localization, Visual Learning, Autonomous Vehicle Navigation

2D3D-MatchNet: Learning to Match Keypoints across 2D Image and 3D Point Cloud(深度学习,2D3D数据下的匹配特征点提取网络)

Feng, Mengdan    National University of Singapore

Keywords: Deep Learning in Robotics and Automation, Visual Learning, Localization

Look No Deeper: Recognizing Places from Opposing Viewpoints under Varying Scene Appearance Using Single-View Depth Estimation(用深度学习的深度预测来完成反向视角下的VPR)

Keywords: Localization, Deep Learning in Robotics and Automation

Multi-Process Fusion: Visual Place Recognition Using Multiple Image Processing Methods——IRAL(图像上多信息融合做VPR)

Keywords: Localization, Visual-Based Navigation

4.Depth & Disparity

(AWARD)Geo-Supervised Visual Depth Prediction(深度图网络)

Keywords: Visual Learning, Sensor Fusion

代码
https://github.com/feixh/GeoSup

FastDepth: Fast Monocular Depth Estimation on Embedded Systems(178fps TX2上的224x224深度图计算方法)

Keywords: Deep Learning in Robotics and Automation, Range Sensing, Computer Vision for Other Robotic Applications

代码
http://fastdepth.mit.edu
https://github.com/dwofk/fast-depth

SuperDepth: Self-Supervised, Super-Resolved Monocular Depth Estimation

Keywords: Deep Learning in Robotics and Automation, Visual Learning, Mapping

Depth Completion with Deep Geometry and Context Guidance(稀疏深度图补齐网络)

Keywords: RGB-D Perception, Computer Vision for Other Robotic Applications

Self-Supervised Sparse-To-Dense: Self-Supervised Depth Completion from LiDAR and Monocular Camera(自监督学习的Lidar深度数据补齐)

Keywords: Visual Learning, RGB-D Perception, Sensor Fusion

代码
https://github.com/fangchangma/self-supervised-depth-completion

Self-Supervised Learning for Single View Depth and Surface Normal Estimation(自监督的深度和法向图估计)

Keywords: Deep Learning in Robotics and Automation, Visual Learning, Mapping

Plug-And-Play: Improve Depth Prediction Via Sparse Data Propagation(循环优化深度图)

Keywords: Deep Learning in Robotics and Automation, RGB-D Perception, Computer Vision for Automation

Depth Generation Network: Estimating Real World Depth from Stereo and Depth Images(左右图生成深度图网络)

Keywords: AI-Based Methods, RGB-D Perception, Range Sensing

Anytime Stereo Image Depth Estimation on Mobile Devices(双目深度图匹配计算方法,快速)

Keywords: Deep Learning in Robotics and Automation, Computer Vision for Automation, Computer Vision for Other Robotic Applications

代码
https://github.com/mileyan/AnyNet

UWStereoNet: Unsupervised Learning for Depth Estimation and Color Correction of Underwater Stereo Imagery(深度学习的双目立体匹配)

Keywords: Marine Robotics, Deep Learning in Robotics and Automation, Computer Vision for Other Robotic Applications

Real-Time Joint Semantic Segmentation and Depth Estimation Using Asymmetric Annotations(深度学习语义和深度的分割网络)

Keywords: Visual Learning, Semantic Scene Understanding, SLAM

代码
https://github.com/DrSleep/multi-task-refinenet

DSNet: Joint Learning for Scene Segmentation and Disparity Estimation(深度学习左右图估计语义分割和深度图)

Keywords: Semantic Scene Understanding, Deep Learning in Robotics and Automation, Object Detection, Segmentation and Categorization

SweepNet: Wide-Baseline Omnidirectional Depth Estimation(宽基线,多摄像头的深度估计方法)

Keywords: Omnidirectional Vision, Computer Vision for Automation, Deep Learning in Robotics and Automation

A Supervised Approach to Predicting Noise in Depth Images(预测深度图的噪声区域)

Keywords: RGB-D Perception, Perception for Grasping and Manipulation, Deep Learning in Robotics and Automation

5. Point Cloud Segmentation

SqueezeSegV2: Improved Model Structure and Unsupervised Domain Adaptation for Road-Object Segmentation from a LiDAR Point Cloud (深度学习,雷达数据分割路面上的物体)

Keywords: Object Detection, Segmentation and Categorization, Semantic Scene Understanding, AI-Based Methods

https://github.com/BichenWuUCB/SqueezeSeg
https://github.com/xuanyuzhou98/SqueezeSegV2

Hierarchical Depthwise Graph Convolutional Neural Network for 3D Semantic Segmentation of Point Clouds(点云语义分割方法)

Keywords: Semantic Scene Understanding, AI-Based Methods, RGB-D Perception

6. Autonomous Vehicle

Learning to Drive from Simulation without Real World Labels(自动驾驶中的学习方法)

Keywords: Deep Learning in Robotics and Automation, Visual Learning, Learning from Demonstration

Learning to Drive in a Day(强化学习的自动驾驶)

Keywords: AI-Based Methods, Deep Learning in Robotics and Automation, Computer Vision for Transportation

Building a Winning Self-Driving Car in Six Months(与Uber 合作的自动驾驶平台)

Keywords: Autonomous Vehicle Navigation, Intelligent Transportation Systems, Computer Vision for Transportation

Multimodal Spatio-Temporal Information in End-To-End Networks for Automotive Steering Prediction (BMW合作的自动驾驶)

Keywords: Autonomous Vehicle Navigation, Deep Learning in Robotics and Automation, Visual Learning

Monocular Semantic Occupancy Grid Mapping with Convolutional Variational Encoder-Decoder Networks——IRAL(单目图生成避障图)

Keywords: Semantic Scene Understanding, Object Detection, Segmentation and Categorization, Computer Vision for Transportation

交流群

欢迎加入公众号读者群一起和同行交流,目前有SLAM、算法竞赛、图像检测分割、人脸人体、医学影像、自动驾驶、综合等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~

从零开始学习三维视觉核心技术SLAM,扫描查看介绍,3天内无条件退款

学习切忌单打独斗,一个良好的学习圈子能够帮助你快速入门,交流讨论才能少走弯路,快速进步!


如有AI领域实习、求职、招聘、项目合作、咨询服务等需求,快来加入我们吧,期待和你建立连接,找人找技术不再难!

推荐阅读

ICRA 2019 论文速览 | SLAM 爱上 Deep Learning

ICRA 2019 论文速览 | 传统SLAM、三维视觉算法进展

吐血整理 | SLAM方向国内有哪些优秀的公司?
最强战队 | 三维视觉、SLAM方向全球顶尖实验室汇总

从零开始一起学习SLAM | 为什么要学SLAM?

从零开始一起学习SLAM | 学习SLAM到底需要学什么?

从零开始一起学习SLAM | SLAM有什么用?

从零开始一起学习SLAM | C++新特性要不要学?

从零开始一起学习SLAM | 为什么要用齐次坐标?

从零开始一起学习SLAM | 三维空间刚体的旋转

从零开始一起学习SLAM | 为啥需要李群与李代数?

从零开始一起学习SLAM | 相机成像模型

从零开始一起学习SLAM | 不推公式,如何真正理解对极约束?

从零开始一起学习SLAM | 神奇的单应矩阵

从零开始一起学习SLAM | 你好,点云

从零开始一起学习SLAM | 给点云加个滤网

从零开始一起学习SLAM | 点云平滑法线估计

从零开始一起学习SLAM | 点云到网格的进化

从零开始一起学习SLAM | 理解图优化,一步步带你看懂g2o代码

从零开始一起学习SLAM | 掌握g2o顶点编程套路

从零开始一起学习SLAM | 掌握g2o边的代码套路

从零开始一起学习SLAM | ICP原理及应用

 最新AI干货,我在看  

登录查看更多
41

相关内容

即时定位与地图构建(SLAM或Simultaneouslocalizationandmapping)是这样一种技术:使得机器人和自动驾驶汽车等设备能在未知环境(没有先验知识的前提下)建立地图,或者在已知环境(已给出该地图的先验知识)中能更新地图,并保证这些设备能在同时追踪它们的当前位置。
【开放书】SLAM 中的几何与学习方法,62页pdf
专知会员服务
111+阅读 · 2020年6月5日
基于视觉的三维重建关键技术研究综述
专知会员服务
164+阅读 · 2020年5月1日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
47+阅读 · 2020年1月23日
专知会员服务
87+阅读 · 2019年12月13日
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
ICRA 2019 论文速览 | 传统SLAM、三维视觉算法进展
计算机视觉life
50+阅读 · 2019年7月16日
视觉SLAM技术综述
计算机视觉life
25+阅读 · 2019年1月4日
SLAM领域牛人、牛实验室、牛研究成果梳理
计算机视觉life
12+阅读 · 2018年12月6日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
【泡泡机器人原创专栏】语义SLAM论文阅读精华提炼
泡泡机器人SLAM
6+阅读 · 2018年10月8日
Arxiv
22+阅读 · 2018年8月30日
Structure Aware SLAM using Quadrics and Planes
Arxiv
4+阅读 · 2018年8月13日
VIP会员
相关资讯
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
ICRA 2019 论文速览 | 传统SLAM、三维视觉算法进展
计算机视觉life
50+阅读 · 2019年7月16日
视觉SLAM技术综述
计算机视觉life
25+阅读 · 2019年1月4日
SLAM领域牛人、牛实验室、牛研究成果梳理
计算机视觉life
12+阅读 · 2018年12月6日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
【泡泡机器人原创专栏】语义SLAM论文阅读精华提炼
泡泡机器人SLAM
6+阅读 · 2018年10月8日
Top
微信扫码咨询专知VIP会员