点击上方“计算机视觉life”,选择“星标”
快速获得最新干货
笔者汇总了ICRA 2019 SLAM相关论文,总共分为四个部分:
Deep learning + traditional SLAM,见 ICRA 2019 论文速览 | SLAM 爱上 Deep Learning
Traditional SLAM/3D vision,见ICRA 2019 论文速览 | 传统SLAM、三维视觉算法进展
Deep learning based SLAM
SLAM evaluation and datasets
本文介绍:deep learning based SLAM
后续文章敬请期待
Keywords: SLAM, Localization, Visual-Based Navigation
Keywords: SLAM, Visual Learning, Localization
代码:
https://github.com/hlzz/DeepMatchVO
Keywords: Localization, Visual Learning, Deep Learning in Robotics and Automation
Keywords: Deep Learning in Robotics and Automation, Localization, Visual Tracking
Keywords: Deep Learning in Robotics and Automation, SLAM
Keywords: Deep Learning in Robotics and Automation, Computer Vision for Transportation, Autonomous Vehicle Navigation
Keywords: Deep Learning in Robotics and Automation, Collision Avoidance, Service Robots
Keywords: Deep Learning in Robotics and Automation
代码
https://github.com/gkahn13/GtS
Keywords: Localization, RGB-D Perception, Computer Vision for Other Robotic Applications
Keywords: Localization, Visual-Based Navigation, Computer Vision for Automation
Keywords: SLAM, Localization
A Comparison of CNN-Based and Hand-Crafted Keypoint Descriptors(传统和深度学习特征描述子的光照和角度变化下的性能分析)
Keywords: SLAM, Visual-Based Navigation, Deep Learning in Robotics and Automation
Keywords: Localization, SLAM, Performance Evaluation and Benchmarking
Keywords: Localization, Visual Learning, Autonomous Vehicle Navigation
Feng, Mengdan National University of Singapore
Keywords: Deep Learning in Robotics and Automation, Visual Learning, Localization
Keywords: Localization, Deep Learning in Robotics and Automation
Keywords: Localization, Visual-Based Navigation
Keywords: Visual Learning, Sensor Fusion
代码
https://github.com/feixh/GeoSup
Keywords: Deep Learning in Robotics and Automation, Range Sensing, Computer Vision for Other Robotic Applications
代码
http://fastdepth.mit.edu
https://github.com/dwofk/fast-depth
Keywords: Deep Learning in Robotics and Automation, Visual Learning, Mapping
Keywords: RGB-D Perception, Computer Vision for Other Robotic Applications
Keywords: Visual Learning, RGB-D Perception, Sensor Fusion
代码
https://github.com/fangchangma/self-supervised-depth-completion
Keywords: Deep Learning in Robotics and Automation, Visual Learning, Mapping
Keywords: Deep Learning in Robotics and Automation, RGB-D Perception, Computer Vision for Automation
Keywords: AI-Based Methods, RGB-D Perception, Range Sensing
Keywords: Deep Learning in Robotics and Automation, Computer Vision for Automation, Computer Vision for Other Robotic Applications
代码
https://github.com/mileyan/AnyNet
Keywords: Marine Robotics, Deep Learning in Robotics and Automation, Computer Vision for Other Robotic Applications
Keywords: Visual Learning, Semantic Scene Understanding, SLAM
代码
https://github.com/DrSleep/multi-task-refinenet
Keywords: Semantic Scene Understanding, Deep Learning in Robotics and Automation, Object Detection, Segmentation and Categorization
Keywords: Omnidirectional Vision, Computer Vision for Automation, Deep Learning in Robotics and Automation
Keywords: RGB-D Perception, Perception for Grasping and Manipulation, Deep Learning in Robotics and Automation
Keywords: Object Detection, Segmentation and Categorization, Semantic Scene Understanding, AI-Based Methods
https://github.com/BichenWuUCB/SqueezeSeg
https://github.com/xuanyuzhou98/SqueezeSegV2
Keywords: Semantic Scene Understanding, AI-Based Methods, RGB-D Perception
Keywords: Deep Learning in Robotics and Automation, Visual Learning, Learning from Demonstration
Keywords: AI-Based Methods, Deep Learning in Robotics and Automation, Computer Vision for Transportation
Keywords: Autonomous Vehicle Navigation, Intelligent Transportation Systems, Computer Vision for Transportation
Keywords: Autonomous Vehicle Navigation, Deep Learning in Robotics and Automation, Visual Learning
Keywords: Semantic Scene Understanding, Object Detection, Segmentation and Categorization, Computer Vision for Transportation
欢迎加入公众号读者群一起和同行交流,目前有SLAM、算法竞赛、图像检测分割、人脸人体、医学影像、自动驾驶、综合等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~
从零开始学习三维视觉核心技术SLAM,扫描查看介绍,3天内无条件退款
学习切忌单打独斗,一个良好的学习圈子能够帮助你快速入门,交流讨论才能少走弯路,快速进步!
如有AI领域实习、求职、招聘、项目合作、咨询服务等需求,快来加入我们吧,期待和你建立连接,找人找技术不再难!
ICRA 2019 论文速览 | SLAM 爱上 Deep Learning
ICRA 2019 论文速览 | 传统SLAM、三维视觉算法进展
从零开始一起学习SLAM | 不推公式,如何真正理解对极约束?
从零开始一起学习SLAM | 理解图优化,一步步带你看懂g2o代码
最新AI干货,我在看