Previous works on image inpainting mainly focus on inpainting background or partially missing objects, while the problem of inpainting an entire missing object remains unexplored. This work studies a new image inpainting task, i.e. shape-guided object inpainting. Given an incomplete input image, the goal is to fill in the hole by generating an object based on the context and implicit guidance given by the hole shape. Since previous methods for image inpainting are mainly designed for background inpainting, they are not suitable for this task. Therefore, we propose a new data preparation method and a novel Contextual Object Generator (CogNet) for the object inpainting task. On the data side, we incorporate object priors into training data by using object instances as holes. The CogNet has a two-stream architecture that combines the standard bottom-up image completion process with a top-down object generation process. A predictive class embedding module bridges the two streams by predicting the class of the missing object from the bottom-up features, from which a semantic object map is derived as the input of the top-down stream. Experiments demonstrate that the proposed method can generate realistic objects that fit the context in terms of both visual appearance and semantic meanings. Code can be found at the project page \url{https://zengxianyu.github.io/objpaint}
翻译:先前的图像绘制工作主要侧重于绘制背景或部分缺失天体, 而绘制整个缺失天体的图像问题仍未解决。 这项工作研究一个新的图像绘制任务, 即形状制导天体油漆。 鉴于输入图像不完整, 目标是根据上下文和洞形状提供的隐含指导生成一个对象, 填补空洞。 由于先前的图像绘制模块主要设计为背景油漆设计, 它们不适合此项任务 。 因此, 我们为该天体的油漆任务建议一种新的数据编制方法和新的背景对象生成器( CogNet ) 。 在数据方面, 我们通过使用对象实例作为洞将对象纳入培训数据。 CogNet 具有双流结构, 将标准底部图像完成进程与自上而下的天体生成进程结合起来。 一个预测级嵌入模块连接两个流, 预测从底部特征中缺失天体的类别, 由此可以绘制一个精密天体对象图( Cogalualualalal- ob) 。 在数据边框中, 我们将天体图作为直观图的输出。, 将您所找到的图的直观的直观图。