项目名称: p进表示的伽罗瓦上同调
项目编号: No.10871183
项目类型: 面上项目
立项/批准年度: 2009
项目学科: 轻工业、手工业
项目作者: 欧阳毅
作者单位: 中国科学技术大学
项目金额: 28万元
中文摘要: 本项目是对p进伽罗瓦表示的伽罗瓦上同调的集中研究。我们采用Fontaine的最新思想,重新诠释了p进Hodge理论。具体说, 我们首先证明Colmez关于p进表示的基本引理,证明Be是主理想整环,由此构造p进基本曲线,并由Harder-Narasimhan定理,确定其稳定向量丛,再给出伽罗瓦不变向量丛和p进伽罗瓦表示的对应,从而再次给出p进Hodge理论两大基本定理"wealkly admissible is admissible"和"de Rham is potentially log-crystalline"的最新证明。我们进一步讨论了由Fontaine理论表述的p进Galois表示的伽罗瓦上同调理论和p进zeta函数,p进L函数及Iwasawa理论的关系。我们还给出了φ27169;的Dieudonne-Manin分类定理的新证明,确定了完备离散赋值环上的Laurent级数环的素谱,证明它是主理想整环。
中文关键词: p进伽罗瓦表示; p进Hodge理论; φ27169;; p进zeta函数; Iwasawa理论
英文摘要: This project is a study of p-adic Galois representations and their Galois cohomology. Based on the latest idea of Fontaine, we rewrite p-adic Hodge theory. Namely, we give a new proof of Colmez's fundamental lemma on p-adic Galois representations, show the key fact that Be is a principal ideal domain, and from this construct the fundamental curve of p-adic representations. We then use Harder-Narasimhan's theorem to study the vector bundles of the p-adic fundamental curve and decide the stable objects of the vector bundles. We give the categorical equivalence of Galois equivariant vector bundles of p-adic fundamental curve and the p-adic Galois representations, and use this to give new proofs of two famous and fundamental results in this field:"weakly admissible is admissible" and "de Rham is potentially log-crystalline". We furthermore study the relation of the p-adic Galois representations in the language of Fontaine to p-adic zeta functions, p-adic L-functions and Iwasawa theory. We also give a new proof of the classification theorem of Dieudonne-Manin on φodules, and decide the spectrum of the ring of Laurent series of given annular convergence over a complete discrete valuation ring and prove that it is a principal ideal domain.
英文关键词: p-adic Galois representation; p-adic Hodge theory; φodule; p-adic zeta function; Iwasawa theory