In this paper we study the finite sample and asymptotic properties of various weighting estimators of the local average treatment effect (LATE), several of which are based on Abadie (2003)'s kappa theorem. Our framework presumes a binary endogenous explanatory variable ("treatment") and a binary instrumental variable, which may only be valid after conditioning on additional covariates. We argue that one of the Abadie estimators, which we show is weight normalized, is likely to dominate the others in many contexts. A notable exception is in settings with one-sided noncompliance, where certain unnormalized estimators have the advantage of being based on a denominator that is bounded away from zero. We use a simulation study and three empirical applications to illustrate our findings. In applications to causal effects of college education using the college proximity instrument (Card, 1995) and causal effects of childbearing using the sibling sex composition instrument (Angrist and Evans, 1998), the unnormalized estimates are clearly unreasonable, with "incorrect" signs, magnitudes, or both. Overall, our results suggest that (i) the relative performance of different kappa weighting estimators varies with features of the data-generating process; and that (ii) the normalized version of Tan (2006)'s estimator may be an attractive alternative in many contexts. Applied researchers with access to a binary instrumental variable should also consider covariate balancing or doubly robust estimators of the LATE.
翻译:在本文中,我们研究当地平均治疗效果(LATE)估算器(LATE)的各种加权估计器的有限抽样和无症状特性,其中有一些基于Abadie(2003)的 kappa 理论。我们的框架假定了一个二进制的内生解释变量(“处理”)和一个二进制工具变量,这些变量只有在对额外的共变体进行调节之后才能有效。我们争辩说,我们所显示的Abadie 估计器的重量正常化,其中之一在很多情况下可能会主宰其他的平衡。一个显著的例外是,在片面不合规的情况下,某些非正常的估算器的优势是建立在从零开始的分母之上。我们使用模拟研究和三个实验应用来说明我们的结论。在应用大学近距离工具(Card,1995年)和使用比重性构成工具(Angrist和Evans,1998年)的生育因果关系方面,一个非正常的估算器性估算器显然不合理,有“不正确的”标志、尺寸或两者的不合规性。总体而言,我们的结果表明,Silvial Exalalalalalalalalalal ex ex ex (ider) 和Serview) 的计算器算的相对比重(I) 的计算器的计算器的模型的相对比重(I) 和可变的计算器的计算器的相对比重。