基于TensorFlow的机器学习速成课程25讲视频全集(01-03讲)

2018 年 4 月 15 日 专知 专知内容组

【导读】前些日子,大家都知道,Google 上线了基于 TensorFlow 的机器学习速成课程,它包含 40 多项练习、25 节课程以及 15 个小时的紧凑学习内容。 



本课程是机器学习热爱者的自学指南,且课程资料都是中文书写,课程视频都由机器学习技术转述为中文音频。这对于中文读者来说将会有很大的帮助,我们也能选择英文语音以更精确地学习内容。这曾是 Google 内部培训工程师的课程,有近万名 Google 员工参与并将学到的东西用在产品的优化和增强上。



课程网址:

https://developers.google.cn/machine-learning/crash-course

注:最低下角可点击切换到中文版


课程目录

机器学习概念

01-03讲:机器学习简介、框架处理、深入了解ML

04-06讲:降低损失、使用TF的基本步骤、泛化

07-09讲:训练集和测试集、验证、表示法

10-12讲:特征组合、简单正则化、逻辑回归

13-15讲:分类、稀疏性正则化、神经网络简介

16-18讲:训练神经网络、多类别神经网络、嵌套

机器学习工程

19-20讲:生产环境机器学习系统、静态与动态训练

21-22讲:静态与动态推理、数据依赖关系

应用示例

23-25讲:癌症预测、18世纪文字、应用准则

第一讲:机器学习简介

本单元将为您介绍机器学习 (ML)。

预计用时:3 分钟

学习目标

  • 了解掌握机器学习技术的实际优势

  • 理解机器学习技术背后的理念


第二讲:问题构建

本单元探讨了如何将某个任务构建为机器学习问题,并介绍了各种机器学习方法中通用的很多基本词汇术语。

预计用时:2 分钟

学习目标

  • 复习机器学习基本术语。

  • 了解机器学习的各种用途。



第三讲:深入了解机器学习

线性回归是一种找到最适合一组点的直线或超平面的方法。本模块会先直观介绍线性回归,为介绍线性回归的机器学习方法奠定基础。

预计用时:3 分钟

学习目标

  • 复习前面学过的直线拟合知识。

  • 将机器学习中的权重和偏差与直线拟合中的斜率和偏移关联起来。

  • 大致了解“损失”,详细了解平方损失。

明天更新4~6讲,继续关注!


https://developers.google.cn/machine-learning/crash-course

-END-

专 · 知

人工智能领域主题知识资料查看获取【专知荟萃】人工智能领域26个主题知识资料全集(入门/进阶/论文/综述/视频/专家等)

请PC登录www.zhuanzhi.ai或者点击阅读原文,注册登录专知,获取更多AI知识资料

请扫一扫如下二维码关注我们的公众号,获取人工智能的专业知识!

请加专知小助手微信(Rancho_Fang),加入专知主题人工智能群交流!加入专知主题群(请备注主题类型:AI、NLP、CV、 KG等)交流~

投稿&广告&商务合作:fangquanyi@gmail.com


点击“阅读原文”,使用专知

登录查看更多
27

相关内容

“机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让 可以自动“ 学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多 推论问题属于 无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。” ——中文维基百科

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【干货书】机器学习Python实战教程,366页pdf
专知会员服务
338+阅读 · 2020年3月17日
Sklearn 与 TensorFlow 机器学习实用指南,385页pdf
专知会员服务
129+阅读 · 2020年3月15日
谷歌机器学习速成课程中文版pdf
专知会员服务
145+阅读 · 2019年12月4日
【机器学习课程】机器学习中的常识性问题
专知会员服务
73+阅读 · 2019年12月2日
【机器学习课程】Google机器学习速成课程
专知会员服务
164+阅读 · 2019年12月2日
2019年Google最新中文版《机器学习速成课程》分享
深度学习与NLP
15+阅读 · 2019年9月1日
Python机器学习课程(代码与教程)
专知
35+阅读 · 2019年5月13日
【干货】如何评价谷歌深度学习速成课程
深度学习世界
3+阅读 · 2018年6月15日
吴恩达机器学习课程
平均机器
9+阅读 · 2018年2月5日
独家 | 一文读懂TensorFlow(附代码、学习资料)
数据派THU
3+阅读 · 2017年10月12日
Reasoning on Knowledge Graphs with Debate Dynamics
Arxiv
14+阅读 · 2020年1月2日
Arxiv
6+阅读 · 2019年8月22日
How to Fine-Tune BERT for Text Classification?
Arxiv
13+阅读 · 2019年5月14日
Arxiv
4+阅读 · 2018年10月31日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
6+阅读 · 2018年1月11日
Arxiv
4+阅读 · 2016年12月29日
VIP会员
相关VIP内容
【干货书】机器学习Python实战教程,366页pdf
专知会员服务
338+阅读 · 2020年3月17日
Sklearn 与 TensorFlow 机器学习实用指南,385页pdf
专知会员服务
129+阅读 · 2020年3月15日
谷歌机器学习速成课程中文版pdf
专知会员服务
145+阅读 · 2019年12月4日
【机器学习课程】机器学习中的常识性问题
专知会员服务
73+阅读 · 2019年12月2日
【机器学习课程】Google机器学习速成课程
专知会员服务
164+阅读 · 2019年12月2日
相关资讯
相关论文
Reasoning on Knowledge Graphs with Debate Dynamics
Arxiv
14+阅读 · 2020年1月2日
Arxiv
6+阅读 · 2019年8月22日
How to Fine-Tune BERT for Text Classification?
Arxiv
13+阅读 · 2019年5月14日
Arxiv
4+阅读 · 2018年10月31日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
6+阅读 · 2018年1月11日
Arxiv
4+阅读 · 2016年12月29日
Top
微信扫码咨询专知VIP会员