A palindromic substring $T[i.. j]$ of a string $T$ is said to be a shortest unique palindromic substring (SUPS) in $T$ for an interval $[p, q]$ if $T[i.. j]$ is a shortest one such that $T[i.. j]$ occurs only once in $T$, and $[i, j]$ contains $[p, q]$. The SUPS problem is, given a string $T$ of length $n$, to construct a data structure that can compute all the SUPSs for any given query interval. It is known that any SUPS query can be answered in $O(\alpha)$ time after $O(n)$-time preprocessing, where $\alpha$ is the number of SUPSs to output [Inoue et al., 2018]. In this paper, we first show that $\alpha$ is at most $4$, and the upper bound is tight. Also, we present an algorithm to solve the SUPS problem for a sliding window that can answer any query in $O(\log\log W)$ time and update data structures in amortized $O(\log\sigma)$ time, where $W$ is the size of the window, and $\sigma$ is the alphabet size. Furthermore, we consider the SUPS problem in the after-edit model and present an efficient algorithm. Namely, we present an algorithm that uses $O(n)$ time for preprocessing and answers any $k$ SUPS queries in $O(\log n\log\log n + k\log\log n)$ time after single character substitution. As a by-product, we propose a fully-dynamic data structure for range minimum queries (RmQs) with a constraint where the width of each query range is limited to polylogarithmic. The constrained RmQ data structure can answer such a query in constant time and support a single-element edit operation in amortized constant time.
翻译:(i. j. j) 平面的 $T[. j] 平面的 平面的 $T[. j] 基质的 美元 。 如果 $T[. j] 美元是一个最短的 $T[p. j], 美元仅发生一次, 而 $T[. j] 美元包含 $p, $T. j] 。 SUPS 问题是, 给一个长度为 kT$ 的字符串, 以构建一个能为任何给定的查询间距计算所有 SUPS (SPS) 的 平面的 美元 基质点。 已知任何SUPS 查询可以以$( ALpha. p. j. $) 美元 预处理, $( $ 美元) 美元 美元 。 在本文中, 我们首先显示, $ 平面的 平面的 时间支持 最多为 4 美元, 而 上层是 。 此外, 我们用算算算算算算算算 SUPSlPS 问题 $ 问题 。