Pseudospectral collocation methods have proven to be powerful tools to solve optimal control problems. While these methods generally assume the dynamics is given in the first order form $\dot{x} = f (x, u, t)$, where x is the state and u is the control vector, robotic systems are typically governed by second order ODEs of the form $\ddot{q} = g(q, \dot{q}, u, t)$, where q is the configuration. To convert the second order ODE into a first order one, the usual approach is to introduce a velocity variable v and impose its coincidence with the time derivative of q. Lobatto methods grant this constraint by construction, as their polynomials describing the trajectory for v are the time derivatives of those for q, but the same cannot be said for the Gauss and Radau methods. This is problematic for such methods, as then they cannot guarantee that $\ddot{q} = g(q, \dot{q}, u, t)$ at the collocation points. On their negative side, Lobatto methods cannot be used to solve initial value problems, as given the values of u at the collocation points they generate an overconstrained system of equations for the states. In this paper, we propose a Legendre-Gauss collocation method that retains the advantages of the usual Lobatto, Gauss, and Radau methods, while avoiding their shortcomings. The collocation scheme we propose is applicable to solve initial value problems, preserves the consistency between the polynomials for v and q, and ensures that $\ddot{q} = g(q, \dot{q}, u, t)$ at the collocation points.


翻译:psedo 光谱共定位方法已被证明是解决最佳控制问题的强大工具 。 虽然这些方法一般假定动态以第一个顺序 $\ dot{x} = f (x, u, t) 表示, x 是状态, u 是控制矢量, 机器人系统通常由第二个顺序 以 $\ddot{q} = g(q,\ dot{q} = g, u, t) 表示, q 配置为 。 要将第二顺序 ODE 转换为第一个顺序, 通常的做法是引入一个速度变量 v = f (x, u, t) = f( f) = f(x, u, q) = 控制源量, 机器人系统通常为 q(qddddot}, u, u, et) 调控为 colot 。 这对方法来说很不妥, 因为它无法保证 $ddddo, dot = dalt (q} = g, lives liver- levelys, legs to the dalmotions as the sals lavelys, as the salds lavel the salds, the saldaldaldalds saldaldaldaldalds, yss salds) at sixs at salds.

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
机器学习组合优化
专知会员服务
108+阅读 · 2021年2月16日
专知会员服务
52+阅读 · 2020年9月7日
专知会员服务
39+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
机器学习组合优化
专知会员服务
108+阅读 · 2021年2月16日
专知会员服务
52+阅读 · 2020年9月7日
专知会员服务
39+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员